

SUV, the new series of **Smart UV** radiometers

Marc Korevaar, Allard Partosoebroto, and Joop Mes EMS Budapest, September 5, 2018

Instrument Manufacturer

Since 1830

Overview

- Introduction UV irradiance
- The new Smart UV sensor
- Lab tests
- Sensitivity matrix
- Outdoor measurements
- Conclusions

Radiometer overview

SOLAR RADIATION

Solar UV Radiation

UV radiation:

• UV-A: 315 nm – 400 nm : 0 – 90 W/m²

• UV-B: 280 nm - 315 nm : 0 - 6 W/m²

 UV-C: 100 nm – 280 nm : blocked by atmosphere

 UV Erythema: erythema weighted dose: 0 – 0.6 W/m²

Image courtesy Coolasuncare

UV Erythema curve

Proposed by McKinlay & Diffey (1987) Model of susceptibility of skin to sunburn UV-B much more weight than UV-A

UV Index

UV irradiance weighted by CIE UV Erythema curve

UV index: 1 unit equals 25 mW/m²

UV Index gives risk of harm from sun exposure

UV index	Color	UV-E Irr. [mW/m ²]	Risk
0-2.9	Green	0-74	Low
3-5.9	Yellow	75-149	Moderate
6-7.9	Orange	150-199	High
8-10.9	Red	200-274	Very high
11+	Violet	275+	Extreme

New S(mart)UV series

SUV A SUV B SUV E

Quartz diffuser (more stable than Teflon¹)

Directional response < 2.5% up to 70°

Temperature response < +/- 2% (-20° to +50°)

Power requirement max. 100 mW

Communication

- RS-485 interface with Modbus® protocol
- Amplified analogue output 0 − 1 Volt or 4 − 20 mA

SUV-E response curves

Lab. response curves of production SUV-E and CIE curve

SUV-B response curves

Lab. response curves of production SUV-B

EIPP & Typical UVS-B sensitivity matrix

Normalised \(\chi \) Sensitivity (Ozone, Zenith Angle) Due to not 100% match with ideal spectral response there is a sensitivity dependence on Ozone column density and solar zenith angle. Normalised ■ 1.00E+00-1.05E+00 9.50E-01 9.50E-01-1.00E+00 9.00E-01 9.00E-01-9.50E-01 8.50E-01 8.50E-01-9.00E-01 8.00E-01 8.00E-01-8.50E-01 300 15 30 45 260 60 70 Solar Zenith Angle

 χ Sensitivity as a function of Ozone column density and solar zenith angle. Variation of - 20%.

KIPP & Typical SUV-B sensitivity matrix

Much more constant response for varying zenith angle and ozone. Variation of -5%.

Uviator Software

- χ sensitivity as function of:
 - Solar zenith angle
 - Ozone column density [DU]

Provided in dcc file

With Uviator software correction for influence of zenith angle and Ozone possible

Uviator software

Input: file of measurements over time, location, ozone data

Output: corrected UV irradiance

Outdoor measurement

SUV E on roof compared to Brewer

Outdoor measurement

Good agreement between Brewer and SUV-E in Delft (NL)

Conclusions

- SUV-B improves spectral response compared to old Kipp & Zonen UVS-B
- Uviator software can improve UV measurement data by correcting for instrument response.
- Preliminary outdoor measurements of the SUV-E show a good comparison with the Brewer.
- More outdoor measurements planned

Thank you for your attention!

Questions?

Passion for Precision

in measuring Solar Radiation and Atmospheric Properties

