

Multiscale configuration of the 20 July 2016 cyclone induced severe torrential rain and its relationship with the development of M γ CS

Xiaoyuan Yi and Hong Chen

Tianjin Meteorological Observatory, Tianjin 300074, China (yixy123@sina.com)

Affected by northward cyclone, a rarely seen severe rainstorm hit the region of northern China on 20 July 2016, resulting in a new extremum of daily mean precipitation amount in this region in the past 50 years. The extreme value of the process rainfall at a single station was up to 453.7mm. Besides, the losses were even devastating with 130 deaths and 110 missing reported.

The results are as follows. (1) The thermodynamic and vapor configurations of different parts of the comma cloud system are: the vortex center (Zone D) coincides with the center of the cyclonic circulation and is a low value zone of the 700hPa pseudo equivalent temperature (θ_{se}). The west side of the tail cloud zone is a dry, cold and cloudless zone. The smooth zone at the edge of the cloud zone corresponds to the energy front zone. The head of the cloud system (Zones A and B) corresponds to the θ_{se} high energy zone of the 700hPa and the jet stream core of the 850hPa, while the Zones A and B correspond to northeast and southeast jets, respectively. In the jet zone, the θ_{se} of 700hPa is as high as 78 [U+2103], the 850 hPa specific humidity is 18 g·kg⁻¹, the maximum jet core wind speed is 30m·s⁻¹, and the entire precipitable water amount is 70 mm. (2) The comma cloud system has two M α CSs and one M β CS embeded in the head, which are the major contributors to the severe torrential rains, but the rain intensity is only 20-30 mm·h⁻¹. However the M γ CS in Beijing (M γ CS-BJ) and M γ CS in Tianjin (M γ CS-TJ) both caused extremely heavy precipitation with the intensity getting to 40-70 mm·h⁻¹. The two M γ CSs are generated and maintained under different multi-scale background conditions: (a) M γ CS-BJ is located in the vortex center (Zone D), which is the left front convective instability zone of the low level jet, combined with the wind direction convergence line formed by the northerly wind and the east wind. The convergence line appears about 1.5h earlier than the convective system. (b) M γ CS-TJ is located in the edge zone between the cloud head and the vortex center. It occurs in the high gradient energy frontal zone of θ_{se} and matches the surface wind speed convergence line. (3) The development of M γ CS-TJ is closely related to the large value zone of TBB gradient in the M β CS edge. M γ CS TJ has a deep meso-cyclone inside, with the axis tilting to northwest, and the maximum rain intensity occurs at the moment when the rotation speed is the fastest.