Deep learning for Chinese NOx emission inversion and the integration of in situ observations: a case study on the COVID-19 pandemic

Tai-Long He¹, Dylan Jones¹, Kazuyuki Miyazaki², Kevin Bowman³, Zhe Jiang³, and Rui Li³

¹Department of Physics, University of Toronto, Toronto, Canada
²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
³School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

The COVID-19 pandemic led to the lockdown of over one-third of Chinese cities in early 2020. Observations have shown significant reductions of atmospheric abundances of NO₂ over China during this period. This change in atmospheric NO₂ implies a dramatic change in emission of NOₓ, which provides a unique opportunity to study the response of the chemistry of the atmospheric to large reductions in anthropogenic emissions. We use a deep learning (DL) model to quantify the change in surface emissions of NOₓ in China that are associated with the observed changes in atmospheric NO₂ during the lockdown period. Compared to conventional data assimilation systems, deep neural networks are free of the potential errors associated with parameterized subgrid-scale processes. Furthermore, they are not susceptible to the chemical errors typically found in atmospheric chemical transport models. The neural-network-based approach also offers a more computationally efficient means of inverse modeling of NOₓ emissions at high spatial resolutions. Our DL model is trained using meteorological predictors and reanalysis data of surface NO₂ from 2005 to 2017. The evaluation is conducted using in-situ measurements of NO₂ in 2019 and 2020. The Baidu 'Qianxi' migration data sets are used to evaluate the model's performance in capturing the typical variation in Chinese NOx emissions during the Chinese New Year holidays. The TROPOMI-derived TCR-2 chemical reanalysis is used to evaluate the DL analysis in 2020. We show that the DL-based approach is able to better reproduce the variation in anthropogenic NOₓ emissions and capture the reduction in Chinese NOₓ emissions during the period of the COVID-19 pandemic.