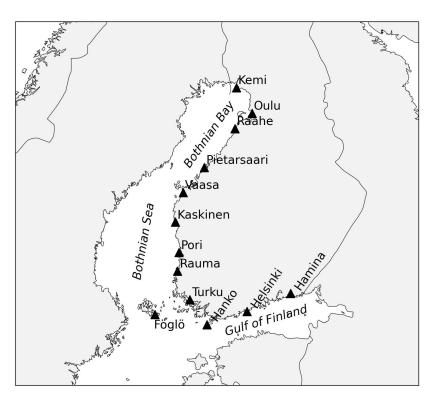
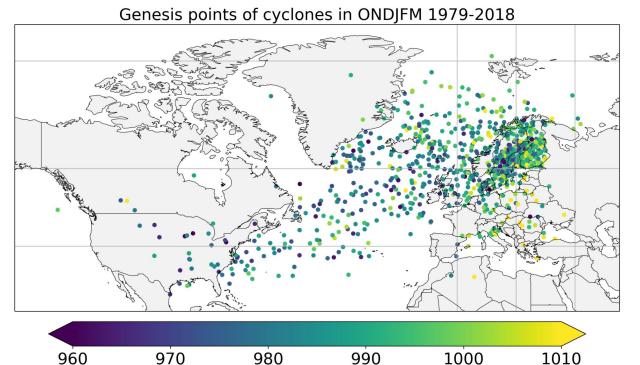
Synthetically generated low-pressure systems to support studies of sea level extremes in Finland

Mika Rantanen, Jani Särkkä, Jani Räihä, Matti Kämäräinen, and

Kirsti Jylhä

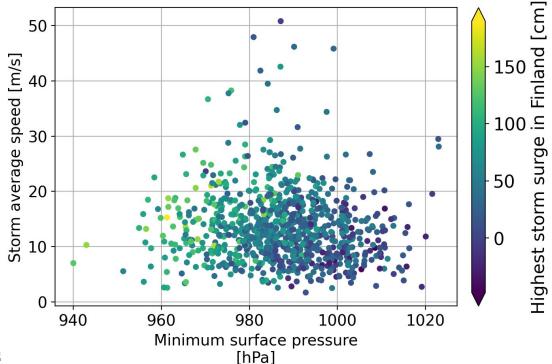

Finnish Meteorological Institute, Finland

07.09.2021


Characteristics of the sea level in the Baltic Sea

- Sea level affected by wind, air pressure and seiches
- Mean sea level from water flow through the Danish Straits
- Negligible tides, mean depth 54 m
- Extreme sea levels caused by wind storms
- Highest maxima in the ends of bays
- Finnish tide gauges (shown on the map) have 100-year time series
- Highest observed maxima at Hamina (197 cm in 2005) and Kemi (201 cm in 1982)

Windstorms passing Finland

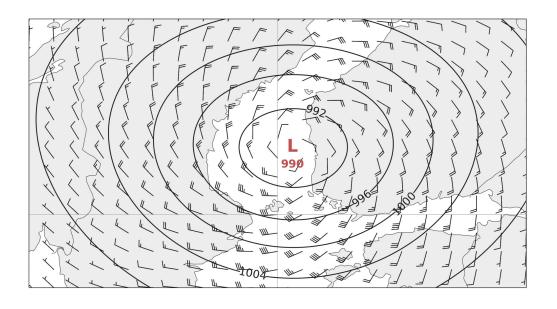


Minimum surface pressure [hPa]

- Most windstorms passing Finland come from west
- Their points of origin and minimum surface pressure extracted from ERA5 data

The intensity and speed of the windstorms vs. the highest observed surge in Finland

- The stronger the storm, the higher the storm surge
- The highest surges occur typically with storm speed of ~15 m/s
- What would be the highest storm surge if these storms would have travelled with the most "optimum" track?

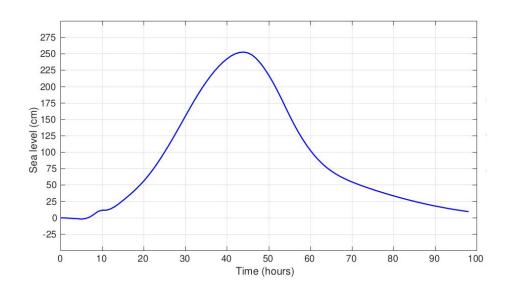


Method to simulate sea level extremes

- Aim is to study coastal sea level maxima due to wind storms
- How severe coastal flooding could occur, if the weather conditions are optimal?
- Looking for the storm tracks that cause the highest storm surges
- Generate an ensemble of synthetic cyclones (moving pressure fields)
- Calculate the surface winds from the pressure field
- Sea levels are simulated with a barotropic numerical model, having surface wind and pressure as forcing
- Large ensemble of cyclones with varying tracks is used as forcing to sea level model

Cyclone generation

- Pressure distribution has Gaussian shape
- Cyclone moves with constant velocity from the point of origin
- The maximum depth of the pressure distribution is constant
- Surface winds obtained from corrected geostrophic winds
- Correction based on reanalysis data


Highest simulated sea level at Hamina

- Storm surge in the Gulf of Finland
- Maximum sea level at Hamina 256 cm
- 59 cm higher than the observed extreme in 2005

Highest simulated sea level at Kemi

- Storm surge in the Bothnian Bay
- Maximum sea level at Kemi 253 cm
- 52 cm higher than the observed extreme in 1982

Conclusions

- Highest simulated sea level extremes are about 250 cm at the Finnish coast
- Highest extremes are caused by large and slowly propagating wind storms
- Mean water level of the Baltic Sea (up to 100 cm) should be added to the storm surge
- Over 300 cm sea levels are possible when storm surge coincides with preceding high mean sea level
- Probabilities of extremes are not assessed with this method (no weighting for the storm tracks)

