

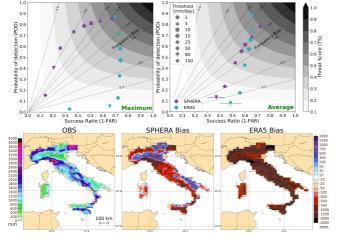
The new Italian regional reanalysis SPHERA: benefits of the convection-permitting resolution in detecting severe-weather events

Antonio Giordani^{1,2}, Ines Cerenzia¹, Tiziana Paccagnella¹, Silvana Di Sabatino²

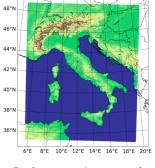
Contact: antonio.giordani3@unibo.it

1 - ARPAE-Emilia Romagna SIMC, Bologna

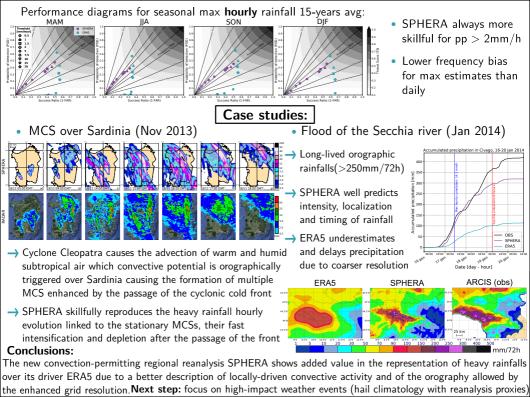
2 - University of Bologna, Department of Physics and Astronomy (DIFA)


EMS Annual Meeting 2021

• SPHERA: High rEsolution regional ReAnalysis over Italy: downscaled from ERA5 with COSMO at 2.2km + assimilation of regional observations, spans 1995-2020


Reanalysis	Domain	Resolution	Model	Forcing	DA	Coverage	group
ERA 5	Global	31km	IFS (2016)		IFS Cycle 31/2	1979-now (1950-now)	ECMWF
SPHERA	Italy	2.2km	соѕмо	ERA 5	Cont. nudging	(1995-2020)	ARPAE

Aim: better describe high-impact weather events (convection)


→ Validation of SPHERA and ERA5 vs daily- & hourly-accum. precipitation datasets (DEWETRA & ARCIS) 2003-2017: upscaling rean-obs fields and taking mean/max values

- → Performance diagrams of daily precipitations: higher skill of SPHERA in simulating heavy rainfalls
- → Maximum yearly rainfall 15-years avg and deviation from obs.: systematic dry bias for ERA5, smaller locally-driven deviations for SPHERA (orography)

