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. estimation 7 ¥ coimection Figure 4: Station CRPSS value against lead-time. Coloured box
Offline NQT = Figure 3: Continuous Ranked Probability Skill Score - - - th th
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Kalman filter ; 0 at one or more lead-times. Blue: Mean CRPSS > 0.9. * Large catchments (green, top) are improved more due to
: « Decrease in magnitude of improvement at longer their slower responses. Recent observations are more
'“‘:’?":“ lead-times for most stations. . Most stations are improved by post-processing informative about the discharge in the forecast period.
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Figure 1: Post-processing method for a station. Input data are ! . . to a decrease in response time and an increase in the
. | decrease in skill of benchmark. )
separated by time and data type. Colour of arrows and boxes show . meteorological errors.
which uncertainties the data and methods are used to quantify. » Degraded stations tend to be:
Blue: Hydrological. Red: Meteorological. Purple: Both. | « Greatest improvement is to the correlation
f component of the modified Kling Gupta Efficiency » Near mountainous regions (e.g. west of the Key Results
o score. Scandinavian Peninsula), or
3. Evaluation Strategy g « Post-processing improves the skill of the streamflow
Post-processing method is evaluated by comparing the raw * Bias and.variability ratio components improved at » Inflashy catchments (e.g. Southern Spain). forecasts at the majority of stations.
forecasts with the post-processed forecasts. most stations but are often over-corrected. « Catchments with lower hydrological model skill are o Theimprovement decreases at longer lead-times.

2 years of twice-weekly ensemble reforecasts (208 forecasts) improved more. e The effectiveness of post-processing |arge|y depends on
«  Evaluation uses daily discharge observations. e the response time of the catchments.

Skill scores use raw forecast as benchmark: o Hydrological model errors are corrected more than errors
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