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Introduction



Thermally-driven winds

— Originate from the daytime heating/nighttime cooling of sloping surfaces (more
details on transition in Farina et al. 2021, EMS2021)

— Mostly occur during clear-sky summer days characterized by weak synoptic forcing
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Existing analytical models for slope winds

Most known analytical models describing the profile of slope winds are of two types :
— Stationary in time (e.g. Prandtl 1942)

— Time-dependent: Zardi and Serafin (2015). Temperature anomaly and along slope
wind profile as a response to a Sinusoidal temperature forcing at the surface.
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Zardi and Serafin (2015), temperature anomaly
(red) and along-slope wind (blue) for large slope
angles.




Problems in existing time-dependent model

— Sinusoidal temperature at the surface produces a symmetric up-slope down-slope
regime

— Observed profiles of slope winds are asymmetric between daytime and nighttime
regimes.
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— The Surface energy budget governs the onset and structure of slope winds.

Can we use it as boundary condition for surface temperature?




Zardi and Serafin (2015) model

Governing equations:

au N . o'u a0 . %0
= 97sm(a) + me = —unysin(a) + Khﬁ (1)
Surface boundary conditions:
u(0,t) =0 0(0,t) = Osin(wt + 1) (2)
Given 12 12
wy =No +w w_ =Ny —w [y = (2—K) L = (2—K) (3)
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Solutions for the supercritical case (N, > w, strong stability and steep slopes) hold:
U= @N[‘””cos(wt———s—w)— /’*cos<wt+ +w)} (4)
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Extension to a more general periodic surface forcing

The surface temperature boundary condition was modified as:
6(0,t) = Omsin(mwt + ¢m) (6)
m=1

and solutions for temperature and wind velocity:
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Harmonics higher than some critical value (w) are subcritical.
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Solution of the surface energy budget

Surface energy budget holds:

Rnet:(1—A)Rm+LWnet:H+G:—K§—§ il g—: - (9)
Being the temperature signal in the ground:
T= mi; Omsin (mwf + [GLm + w) e"/lom (10)
Equation (9) becomes:
Rnet = i Omv/ @, + bisin(mwt + om + ém) (1)
m=1
= S T T b= 3t 2 A

(12)
. bm
¢m =arcsin | ——
<\/a%ﬂ + b%)

— If Rnet can be written as a sum of sines too, ©,, can be derived for each harmonic to

give the surface temperature signal controlled by the energy balance.
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Net Radiation model




Net Radiation Budget

Net radiation budget can be written as
Rnet = Rin + Rout + LWm + LWout (13)

Assumptions:
- Rj, considers just the direct component
- Rout is computed by considering a mean albedo of the surface

-+ LWhet = €Té — €Tt will be treated as a constant

Incoming solar radiation at the surface:

Rin = Rs cosf T (14)

where Rs is the solar radiation at the top of the atmosphere, cos @ is the cosine solar
incident angle (9) and 7 is the atmospheric transmittance.




Incoming solar radiation in complex terrain

- Incoming radiation mainly controlled by latitude and day of the year.
- Topography (slope angle and orientation) also plays an important role

cosf = (sing cosa — cos¢ sina cosy) sind + (cos¢ cosa

+ sin¢ sina cosy) cosd cos(wt) + cosd siny sina sin(wl)

t=t—12h  Time with respect to solar noon (t = 0) (16)
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Clear-sky atmospheric transmittance

Atmospheric transmittance is parameterized using the model of Hottel (1976):

T=1T0+T-ExXp (7COSL(Z)> (17)
cos(Z) =sin¢ sind + cos¢ cosd cos(wt) (18)

— for writing the radiation as a series expansion model, we tested two approximations
of the exponential term

- Approximation 1:

k 1
exp (— cosZ) =F cosZ exp(—R)

Fe =exp </? (m) — 1) -cos(¢p — §)

- Approximation 2:

(19)

) = l(Cq cosZ Cycos2Z + C3 cos3Z) exp(—R)
Fe
1

P :exp(k(m) - 1) . (C1 cos(¢p — &) + o cos(2(p — 9)) (20)

+ C3cos(3(¢ — 6)) G =5 &= =0.1,&=-03

exp( -

cos”Z
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Clear-sky atmospheric transmittance

Exponential term of transmittance
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Net Radiation outcome with the two approximations

The net radiation budget can be written as:

Riet = (Ro) + > _ V/Roc + R sin(mwt + o + thm ) (21)
m=1

— Equalling Eqg. (19) to Eq. (11) gives the SFC temperature. Ro includes LW and originates

a transient signal.
Net Radiation - Exact solution vs Fourier series (5 harmonics)
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Relative importance of harmonics

— 2 harmonics are enough to reconstruct the radiation profile

400

200

[Wm™2]

—200

—-400

Single harmonics for Incoming Radiation

lat = 40°

slope angle = 10°
aspect = 0°
elevation =0 m
DOY =172

N

Harmonics
— W
—_— 20
— 3w

/\ — 5w
;/

Z X
v 4 S

o

10 15 20
hours




Wind and temperature profiles




Parameters used are:
- Slope angle =10 °
- Slope orientation = 0° (south facing slope)
- Day Of the Year (DOY) = 72 (Summer solstice)
- Eddy diffusivity (kinematic) = 3 m?s~"
- Heat diffusivity in soil (kinematic) = 107% m?s~"

- atmospheric lapse rate = 0.002 Km~" w = 7.2e — 05

Nsina =14 —03 >7.2e —05=w

— Supercritical regime also for the considered higher order harmonics
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Surface temperature profile
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Surface temperature profile

Temperature anomaly at the surface
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Conclusions




Conclusions and perspective works

- The improved surface boundary condition for temperature accounts for the usually
observed difference in magnitude between the daytime and nighttime regimes of
slope winds

- In real situation the depth of the slope wind layer is governed by eddy diffusivity,
which assumes different values between night and day.

- The work shows the effect of zero-mean, daily periodic temperature anomaly.
Transient temperature signal from constant flux term (from Fourier expansion
series) should be taken into account too.

- Further developments including non-constant eddy viscosity and more complete
surface forcing are expected to provide more realistic solutions.

Thank you for your attention!

Feel free to contact me at mattia.marchio@unitn.it for any question or curiosity.
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