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Abstract

Surface wind is an extremely difficult parameter to predict, particularly in the
complex topography of the Alps. Due to several important processes happening at
sub-kilometer scale, even high resolution Numerical Weather Prediction models
such as COSMO-1 still present substantial biases. To address this, a wide range
of statistical post-processing methods are used. Recently, methods based on Deep
Learning have emerged as a new solution and are now actively developed at
many weather services, including MeteoSwiss. At the same time, efforts are
made to obtain accurate representations of surface wind speed up to a few hours
ahead by integrating all available information in real-time, an approach known as
nowcasting.

With the aim of seamlessly combining nowcasting and post-processing approaches
for surface wind speed predictions, we developed a Deep Learning probabilistic
post-processing model that is also able to integrate real time observations, and
developed a new metric, the Similarity Index, for this purpose. The Similarity Index
is a way to estimate the correlation of surface wind speed between two locations,
based on their position and geomorphological setting, and can be used to chose the
best available observation to be used at any point in space at any given time, and
weigh that observation in a way that mimics geostatistical interpolation methods.
The proposed methodology yields improved forecasts of wind speed where both
systematic and random errors are reduced, thanks to the post-processing and
nowcasting components respectively. In a second phase, we implemented a state-
of-the-art explainability framework for machine learning, SHAP, and presented
how it can be used to get insights into the model and build trust in the results.
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Riassunto in italiano

I venti di superficie sono un parametro estremamente difficile da prevedere, in
particolare nella complessa topografia delle Alpi. A causa di diversi importanti
processi che avvengono su scale inferiori al chilometro, anche modelli numerici
di previsione ad alta risoluzione come COSMO-1 presentano ancora errori sig-
nificativi. Per ovviare a questo problema, esistono svariati metodi di correzione
statistica (post-processing). Recentemente, metodi basati sul Deep Learning sono
emersi come una nuova soluzione, e sono attualmente in sviluppo presso molti
servizi meteorologici, incluso MeteoSvizzera. Al contempo vengono fatti sforzi
per ottenere rappresentazioni accurate dei venti di superficie fino ad un orizzonte
temporale di poche ore, integrando tutte le informazioni disponibili in tempo reale,
con un approccio noto come nowcasting.

Nell’intento di combinare nowcasting e post-processing per le previsioni dei venti
di superficie, abbiamo sviluppato un modello di post-processing con Deep Learning
probabilistico che ¢ anche in grado di integrare osservazioni in tempo reale, e a
tale scopo abbiamo sviluppato una nuova metrica, il Similarity Index. Il Similarity
Index &€ un modo di stimare la correlazione del vento di superficie tra due localita,
basandosi sulla loro posizione e il tipo di topografia nella quale si trovano, e puo
essere usato per scegliere la miglior osservazione disponibile per una previsione a
un qualsiasi luogo e in qualsiasi momento, dando poi un peso a detta osservazione
in un modo analogo ai metodi di interpolazione geostatistica. La metodologia
proposta risulta in migliori previsioni dei venti di superficie, per i quali sia gli errori
sistematici che quelli aleatori sono ridotti, grazie rispettivamente alle componenti
di post-processing e nowcasting. In una seconda fase, abbiamo implementato
un sistema all’avanguardia per spiegare i modelli di machine learning, SHAP, e
presentato come questo possa essere usato per ottenere informazioni sul modello e
aumentare la nostra fiducia nei suoi risultati.
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Background

1.1 Motivation

The accurate representation of surface wind is valuable for a wide range of appli-
cations. Wind extremes are among the most destructive natural hazards, and the
prediction of surface winds is a tool for civil protection, as it is used to develop
a reliable early warning system, which is an essential measure of risk reduction
(Sattele et al., 2016). With the ongoing transition to renewable energy, decision
making in the energy industry is also dependent on skillful weather forecasts,
notably for grid load balancing and power trading (Usaola et al., 2004). Wind
power generation in particular is strongly affected by the high spatial and temporal
variability of surface wind. Other specific applications include runway operations
in aviation (Kuikka, 2009), planning in the transport sector or estimates of snow
accumulation for avalanche services (Lehning and Fierz, 2008). In all these cases,
the availability of accurate wind surface analyses and forecasts is crucial even
within a very short period of time. This motivates the development of nowcasting
systems, whose goal is to produce high spatial and temporal resolution analyses
and forecasts of weather developments for present time (analysis) and the next few
minutes up to typically a maximum of six hours ahead. This is done by combining
all available information (measurements and the latest model forecasts) in real
time, with a special attention on computational efficiency due to operational time
constraints. Compared to other meteorological parameters such as temperature,
cloud cover or precipitation, nowcasting surface wind is a more challenging task,
due to its high variability combined with the lack of spatially continuous obser-
vations, and there is currently no established methodology for this task. Finally,
quantitative information on the uncertainty of a prediction is becoming increasingly
valuable. It promotes informed decision-making and allows the user to choose its
own relevant probability threshold (Fundel et al., 2019), it facilitates and even
improves decision-making (Joslyn and LeClerc, 2013) and can increase the thrust




in forecasts (LeClerc and Joslyn, 2015). For these reasons, there’s a growing need
to develop probabilistic forecasts.

1.2 Limitations of Numerical Weather
Prediction (NWP)

Wind forecasts are generally produced by numerical weather prediction (NWP)
models, such as COSMO-1. NWP models solve Navier Stokes and thermodynamic
equations on a discrete grid, thus producing physically consistent forecasts. This is
computationally feasible because of several simplifying assumptions, but it results
in forecast errors. Specifically, model structural errors include the missing or poor
representation of sub-grid processes (due to a too coarse grid) and inaccuracies with
the numerical scheme (Nicolis et al., 2009). Furthermore, NWP models suffer from
high sensitivity to initial conditions due to the chaotic nature of the atmosphere
(Vannitsem, 2017), and boundary conditions can also induce significant errors
(Nicolis, 2007). In the last decades, NWP models have improved considerably
under several key aspects. Better physical parameterisations have reduced the
errors resulting from model simplification, the development of complex data
assimilation systems improved model initialization and the ongoing adoption of
ensemble forecasts allows to estimate the forecast uncertainty (Bauer et al., 2015).
Despite all these progress, NWP model forecasts still display substantial biases. In
particular, shortcomings in horizontal resolution and physical parameterization
make it impossible for operational NWP models to resolve complex processes that
occur on fine spatial scales and characterize surface wind fields. These are related
to a combination of sub-grid local flow patterns resulting from crest speedup,
flow channelling, flow blocking, updraft and downdraft zones, or flow separation
downwind of a ridge crest (Lewis et al., 2008). In other words, surface wind
fields are strongly influenced by both topography and land cover, meaning that
in a complex topography such as the one of the alpine area NWP models are
particularly prone to errors. Another important drawback of NWP, particularly in
the nowcasting range, is the latency between the availability of the model output
and the initialization time, which results from the computational delay and the
time lag between each update cycle of the model (for instance, the COSMO-1

Chapter 1 Background




model currently updates every 3 hours and takes about an hour to compute). This
implies that any forecast is inevitably based on old information, and this is critical
in rapidly changing conditions.

1.3 Post-processing techniques

The deficiencies of NWP models described in the previous section induce two kinds
of error: systematic and random. Both errors require post-processing in order to im-
prove the forecast quality, respectively by correcting systematic biases and adapt the
dispersion in the case of ensemble forecasts. A wide range of statistical techniques
is available for this purpose (D. S. Wilks, 2011; Vannitsem, D. Wilks, et al., 2018).
The vast majority of approaches consists in statistically relating the NWP model
output and other additional data, such as topographic descriptors or seasonality, to
observations. The first applications of these techniques were based on simple linear
regression, e.g. the well known Model Output Statistics (MOS). Nowadays there’s
a bloom of post-processing techniques, particularly for probabilistic forecasts, as
illustrated by Vannitsem, Bremnes, et al. (2020) in a comprehensive review. Most
of the new developments are based on Machine Learning (ML) techniques, and
Artificial Neural Networks (ANNs) are proving to be suitable for post-processing.
Rasp and Lerch (2018) found that ANNs can significantly outperform traditional
post-processing techniques, while being less computationally demanding. The
authors highlight that ANN can better incorporate non-linear relationships in a
data-driven fashion, and thanks to their flexibility are more suited to handle the
increasing amounts of model and observation data. Promising results were also
obtained by Weingart (2018) using a similar technique. Cervone et al. (2017)
also illustrate how these approaches can be efficiently implemented on massively
parallel supercomputers. ANNs have also been combined with other statistical
techniques such as Bernstein polynomials (Bremnes, 2020). More sophisticated
ANNS, such as Convolutional Neural Networks (CNNs) allow a better use of spatial
information. Gronquist et al. (2020) used CNNs to improve forecasts of global
weather. Schar (2019), Hohlein et al. (2020), and Veldkamp et al. (2020) used
CNNs for spatial downscaling of surface wind field. A process-specific application
was proposed by Chapman et al. (2019), with the goal of improving the prediction
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of atmospheric rivers'. Dai (2020) implemented Generative Adversarial Network
based on CNNs to produce physically realistic post-processed forecasts of cloud
cover. It is important to understand that there is no single best solution for post-
processing of NWP forecasts. Depending on the application, different approaches
may prove more suited. For example, Hohlein et al. (2020) and Dai (2020) used
CNNs by interpreting post-processing as an image-to-image problem because the
target was a spatially continuous field, but this is often not the case, particularly
for surface wind. In addition, an important distinction must be made between
local and global approaches. Local approaches are used to post-process a forecast
at a single location, thus a site-specific model is used. On the other hand, global
approaches aim to be able to make prediction at any point in space using a single
model with generalizing capabilities.

1.4 Surface wind nowcasting

While the post-processing of surface wind forecasts is done both with a local and
global approach, research in surface wind nowcasting has focused on the former.
This was driven primarily by the domain of wind power forecasting, where the prob-
lem is interpreted as time-series prediction. Jung and Broadwater (2014) presents
an overview of the existing research in short-term wind forecasting with a local
approach. In recent years, several techniques in the family of artificial intelligence
are emerging in short-range weather forecasting, with promising results (Papazek
et al., 2020). Compared to local approaches, there are no established methods for
surface wind nowcasting at any point in space. The currently operational wind
nowcasting system at MeteoSwiss is a global deterministic model that incorporates
a three-steps algorithm combining an ANNSs, statistical regression and a spatial
interpolation scheme (Buzzi et al., 2019). It is an example of how methodologies
from post-processing and local nowcasting can be combined.

! An atmospheric river is a narrow corridor or filament of concentrated moisture in the atmosphere
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1.5 Aim and outline

ANNs for wind post-processing and nowcasting are actively developed at many
weather services, and this results in incremental improvements while also raising a
wide range of interesting research questions. Therefore, on one hand there is the
importance to follow up on recent efforts, on the other the liberty to investigate
different aspects of these new approaches. Drawing from these two aspects, this
work aims to: develop a ANN-based post-processing tool that is also suitable for
nowecasting, capable of correcting the climatological bias of a model while also
integrating real-time information to reduce random errors; implement state of the
art explainability techniques, in order to evaluate and interpret our models based
on prior knowledge. The rest of this report will be structured as follows: Chapter 2
will give a brief introduction to machine learning, with a focus on concepts specific
to deep learning, in order to facilitate readers that are not familiar with these
techniques; Chapter 3 presents datasets and methodologies used in this project;
in Chapter 4 we will discuss our results. We will evaluate the performance of
our models, both in a general way and with a focus on nowcasting, then present
several examples of how model explainability techniques may be used. Finally, in
Chapter 5 we will draw our final conclusions and present a brief outlook on further
developments in the future.

1.5 Aim and outline







Key concepts of Deep
Learning

This chapter presents a brief introduction to Deep Learning, including an overview
of some key concepts of Machine Learning used in this study. Machine Learn-
ing refers to a wide range of statistical methods that use computer algorithms
to improve automatically through experience, and Deep Learning is one of its
branches, where ANNs are used. This section does not aim to give a complete
and formal introduction to Deep Learning, but rather a simplified summary for
non-practitioners. For a complete review, see e.g. Goodfellow et al. (2016) or
Chollet (2017).

2.1 Optimization

The central problem of most machine learning models is to meaningfully transform
data. That is, transforming the input data into representations (different ways to
look at data) that are meaningful with respect to the expected output. A model
finds the best way to transform data by minimizing a cost function, often called loss
and noted £, which determines how well the model is performing with respect to
the true solution. This cost function is chosen according to the task at hand, e.g. in
the case of regression the Mean Absolute Error or the Mean Squared Error are often
used. Since it is not always possible to find an analytical solution to minimize £,
the key idea of machine learning is to find the best approximate solution by using a
recursive optimization algorithm: a model is exposed to known examples of input
and expected output, and after each exposure the model parameters are updated
such that the transformation applied to the input data results in a representation
that is closer to the expected output. An important intuition about how the learning
occurs, is that there’s no creativity in finding the correct transformations: during
optimization the algorithm is merely searching through a pre-defined space of
possibilities called the hypothesis space of the model, using the loss as a guidance




Model
parameters Model

T Prediction True target
Update
h 4

Fig. 2.1.: A generic framework used for most machine learning applications. The auto-
matic improvement of the model occurs through the optimizer, which updates
the model parameters after each exposure to input and true target (a training
step), based on a feedback signal obtained by the loss function L.

Loss function

signal. A generic framework that applies to most machine learning applications is
represented in figure 2.1.

In the case of deep learning, the transformation of the input data occurs between
successive layers of representation. The term "deep" stands for the idea of having
many layers, which form the core structure of an ANN. What determines the
transformation applied by each layer is the layer’s parameters or weights, and the
learning for an ANN means essentially finding the correct combination of weights
for each layer. To perform the adjustments, ANNs typically adopt gradient-based
optimization algorithms:

Wt =W — aVL(W) (2.1)

where the weights w are adjusted in the negative direction of the gradient of £,
with « representing the learning rate, which regulates the magnitude of each
update. In most cases, weights are initialized randomly, and after each exposure
to examples of data (a training step, represented by equation 2.1) they get closer
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to convergence, i.e. the point at which the model parameters stop adjusting
significantly. This iterative learning process is often referred to as gradient descent,
and it is highly dependable on our ability to find good optimizers of highly non-
convex loss functions. An important issue with gradient descent, in addition to
speed, is the risk of incurring in local minima and saddle points of the gradient.
An optimizer with good convergence should be able to avoid remaining stuck in
local minima and eventually reach a global minima. Several gradient-descent
optimization algorithms have been proposed, see Ruder (2017) for a complete
overview.

2.2 Overfitting and the bias-variance tradeoft

When a model learns from a set of training data, the ultimate goal is that the algo-
rithm will also perform well when exposed to new data that was not encountered
during its learning phase. Overfitting occurs when the model parameters adjust too
closely to the training data, learning examples "by hearth" instead of abstracting
the relevant patterns. In other words, an overfit model unknowingly learned some
of the random noise (unrepresentative variation) in the data as if it represented
the underlying function. Consequently, it will have a weaker generalizing capabil-
ity and perform poorly with unseen data. To evaluate whether a trained model
overfits, one usually tests it on an independent set of data for which the labels are
known. The opposite problem, underfitting, comes when a model’s approximation
of the function is too simplistic. Another central problem of supervised learning’,
intimately related to overfitting, is the bias-variance tradeoff. It can also be seen
as a conceptual framework used to find the right balance between overfitting and
underfitting. The bias error comes from erroneous assumptions in the learning
algorithm. An example is presented in Fig. 2.2, where a linear model is used
to approximate a set of points that evidently do not show a linear relationship.
High bias can cause an algorithm to miss the relevant relations between features
and target outputs (underfitting). The variance is an error from sensitivity to
small fluctuations in the training set (e.g. figure 2.2). High variance can cause an
algorithm to model the random noise in the training data, rather than the intended

!Supervised learning is the machine learning task of inferring a function from labeled training
data.
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Fig. 2.2.:

outputs (overfitting). The tradeoff is in that a model either captures the variability
in its training data or it generalizes on unseen data, and it’s impossible to do both

Error

A simplified representation of the bias-variance tradeoff. Above, the change
in a model’s error based on its complexity; below, a visual representation of a
model’s fitting to a training dataset. Ideally, one wants a model that is complex
enough to model the underlying function, but not too complex to learn the
unrepresentative variation in the training data: this is the model that falls in the

Optimum range

Bias error Variance error
I \\
A
»
Model complexity
Underfitting Good fit Overfitting
o° % [ b® °
.. [ J (J ()
o o o° ® 9 ® 0
L °

optimum range.

simultaneously. The solution is to look for an optimum balance.

2.3 Artificial Neural Networks

2.3.1 Network architecture and hyperparameters

A neural network model is typically defined by its architecture and hyperparameters.
The architecture essentially determines how the model neurons are connected with
one another, and what happens during every transformation on each layer of the
model. A well-known class of ANN is the fully-connected neural network, which
consists of a series of layers that connect every neuron in one layer to every neuron
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in the next layer. Since every layer only connects to the next without forming
cycles?, starting from the input layer and ending with the output layer, this kind of
architecture is also characterised as feed-forward. The degree of complexity of such
models is largely determined by the total number of parameters, which in turn
depends on the number of hidden layers and the number of neurons in each layer.
These and other elements that need to be set by the user (in contrast with the
values of the model parameters or weights, which are often randomly initialized)
are called hyperparameters. Other examples of hyperparameters include: the
learning rate «, the activation functions, the number of epochs and the batch size.
The learning rate, as already seen in section 2.1, determines the magnitude of
corrections at each training step. A large « will result in a faster convergence, but
with the risk of missing the right convergence pathways and incur in exploding
gradients. On the other hand, a too small value can excessively slow down the
training, with the risk of incurring in local minimas. Activation functions determine
the output of each neuron for a given input or set of inputs, and are typically what
allows ANN to model complex non-linear functions, since they provide a non-linear
response for each neuron. A widely used activation function is the Rectified Linear
Unit (ReLu), defined as f(x) = maxz(0,x) where x is the input of a neuron. In
other words, a neuron activates if the input is positive and deactivates if the input
is negative. The number of epochs represents how many times the model sees
the entire training dataset during the training phase. The batch size represents
the number of examples that are used for each training step, i.e. the number of
examples for which the gradient on the loss £ is computer with respect to the
model’s weights.

2.3.2 Regularisation

Regularisation techniques are a variety of modifications applied to the learning
algorithm used to prevent overfitting. Among the most popular is Dropout (Srivas-
tava et al., 2014). The idea is to randomly deactivate some neurons during training,
with a specific probability and repeatedly for each training iteration, such that the
model optimizer won’t update the weights associated with those neurons. Dropout

2When an ANN is designed such that layers form cycles it is called a Recurrent Neural Network,
which is opposed to feed-forward architectures
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can also be regarded as ensemble learning, as different explanatory pathways are
combined to result in the final model. As it will be discussed in section 2.3.2, this
aspect is of particular importance for probabilistic modelling. Another well-known
regularisation technique is early-stopping (Prechelt, 1998). Fundamentally, one
keeps track of the learning curve of the model during training, both for the training
and validation dataset, and stops the training if the validation error stays the same
or increases, while the training error continues to decrease.
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Data and methods

3.1 Observational dataset

The observational data used in this study comes from multiple sources, as shown
in Table A.1. The selected dataset consists of hourly mean observations of several
meteorological parameters including wind speed, wind direction and sea-level
pressure, and the hourly maximum for wind gust. The 739 measurement stations
are distributed over the alpine area (see Fig. 3.1), covering several kinds of geo-
morphological settings, and for this study were considered observations over a four
years period, ranging from April 2016 to April 2020. In total, excluding missing
values, this adds up to roughly 20 millions wind observations. The measurement
networks originally included a larger number of stations, but some of them were
excluded after conducting a quality assessment that is described in Section 3.7.
Additionally, we considered a set of automatic daily weather classification schemes
introduced at MeteoSwiss by Weusthoff (2011), described in Table 3.1.

Tab. 3.1.: CAP9: a daily weather classification with 9 classes derived by a principal
component analysis and subsequent clustering of ERA40 reanalysis, based on
mean sea level pressure in the alpine region.

Wheather classification description Code Frequency
NorthEast, indifferent 0 0.23
West-SouthWest, cyclonic, flat pressure 1 0.16
Westerly flow over Northern Europe 2 0.13
East, indifferent 3 0.13
High Pressure over the Alps 4 0.11
North, cyclonic 5 0.09
West-SouthWest, cyclonic 6 0.07
High Pressure over Central Europe 7 0.05
Westerly flow over Southern Europe, cyclonic 8 0.03
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Fig. 3.1.: Location of all 739 selected stations over the Alpine area, represented with its
topography.

3.2 NWP dataset

The NWP model used as input to train our model is COSMO-1, a state-of-the-art
regional model operated by MeteoSwiss. The model runs with a deterministic
and non-hydrostatic configuration, and has a high horizontal resolution of 1.1km.
The archive of predictions covers about the same spatial and temporal domain of
the observational dataset, and consists of hourly values of several meteorological
parameters, including wind speed, wind gust and wind direction. In addition to
wind related parameters, we considered the boundary layer height as a predictor
for our model, as well as differences in pressure between specific locations (Lugano
and Basel to account for North-South gradient, Geneva and Giittingen for West-East
gradient).
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As a baseline for the evaluation of our model we used COSMO-E, the 21 members
ensemble configuration of COSMO model, that has an horizontal resolution of
2.1km. The choice of using COSMO-E instead of COSMO-1 was motivated by
the need for consistency in the objective quantification of the model performance:
deterministic and probabilistic forecasts are difficult to compare.

The best solution would have been to use COSMO-1E (the ensemble configuration
of COSMO-1), but due to major adjustments on the model’s physical parameteriza-
tions during the pre-operational phase, the homogeneity of the archived data, an
important quality for a machine learning training dataset, had been compromised.
The issue of frequent model changes, violating the assumption that the error char-
acteristics remain constant over time, and the proposed solutions are discussed in
Vannitsem, Bremnes, et al. (2020).

3.3 Topographical descriptors

The geomorphological setting of a location explains a lot of the sub-grid scale
variability of surface wind speed. Therefore, we need a way to characterize the
landscape configuration in a way that is meaningful with respect of the process
of interest. Using a Digital Elevation Model (DEM) as a starting point, there
are two approaches to derive meaningful representations of topography that are
useful for the prediction of surface wind speed: to feed the raw DEM data to
an ANN incorporating convolutional layers, which then automatically abstracts
different levels of representation during the learning phase; to derive topographical
descriptors manually, based on domain knowledge, performing what’s known
in machine learning as feature engineering. Both approaches were evaluated by
Schar (2019), and the latter approach is shown to be preferable both in terms
of forecast performance and computational efficiency. In addition, it facilitates
the interpretation of the model using domain knowledge. A comprehensive set
of topographical descriptors was considered in this study, namely: South-North
derivative, East-West derivative, Slope, Aspect, Valley Norm and Direction, Ridge
Norm and Direction, Topographic Position Index (TPI), Sx. As shown in Chapter
4, only a small subset of these topographical descriptors was included in our final
model.

3.3 Topographical descriptors
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3.3.1 Directional Derivatives

The South-North and East-West derivatives are simply calculated using centered
finite-difference formula as:

DEM(z,y +1) — DEM(z,y — 1)
2Ay ’

dns(z,y) = (3.1)

DEM(x + 1,y) — DEM(x — 2,y)
2Ax

dew(z,y) = . (3.2)

The different spatial scales where calculated by applying a Gaussian smoothing
filter with the corresponding window size to the DEM before computations.

3.3.2 Slope

The Slope is defined as the magnitude of the DEM gradient at any given location
and can be derived from the directional derivatives:

slope(,y) = \/dpw (2,y)? + dys(z, y)2. (3.3)

3.3.3 Aspect

The Aspect is defined as the direction of the DEM gradient at any given location
and can be derived from the directional derivatives:

dew (2, y) y)> . (3.4)

aspect(x,y) = atan?2 (
( ) dNS(ma y)
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3.3.4 Topographical Position Index (TPI)

The TPI is a simple metric used to describe landform types such as hilltops, exposed
ridges, valley bottoms etc. (Weiss, 2001). It’s defined as the altitudinal difference
between a considered location and the mean elevation of its surroundings (which
is defined here using the general expression of a convolution'):

TPI(x,y) = DEM (z,y) — ZZ M(i,j))DEM (x — i,y — j), (3.5)

L

where M is a mean filter kernel of size i x j. The extent of the convolution kernel
around (z,y) determines the scale of the TPI.

3.3.5 Valley Index and Ridge Index

This Valley Index was proposed by Schir (2019) to describe valley shapes and
their main orientation in an attempt to account for wind channeling effects. The
derivation consists in convolving the DEM with valley-like kernels of varying size
(to account for different valley widths) and shape (to account for different valley
type, e.g. U-shaped or V-shapes). The kernels are applied to every pixel of the DEM
using the Fast Fourier Transform, with varying orientations (0-360 degrees with 1
degree increment) and then combined to create the Valley Index.

ValleyIndex(z,y) = > > V(i,j)DEM (z — i,y — j), (3.6)

vt

where V is the valley-shaped kernel of size i x j. Additionally, the magnitude of
the Valley Index was multiplied by the sine and cosine of the valley orientation to
result in two descriptors, one for each component of the valley orientation. The
Ridge Index follows the same principle of the Valley Index, but the kernels are

!Convolution is the process of adding each element of a matrix to its local neighbors, weighted by
a kernel. It is extensively used in image processing.

3.3 Topographical descriptors
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reversed in order to highlight ridges instead of valleys. The different spatial scales
are determined by the size of the convolution kernel.

3.3.6 Sx

The Sx represents the maximum slope among all imaginary lines connecting a given
pixel with all the ones lying in a specific direction and up to a maximum distance
(Winstral et al., 2017). Sx is a proven wind-specific terrain parameterization
capable of differentiating such slopes based on given wind directions, therefore
adding flow-dependency to the model input space. The derivation of the Sx is
formulated as:

DEM — DEM height
Sﬂjaz,dmaz (.T, y) = max (tcml ( (l‘v’ yv) (.ZU, y) + €19 )) , (37)

(20 — 2)% + (g0 — 9)?]?

where az is the azimuth of interest, d,,,, is the maximum distance (radius), (z,y)
the considered pixel coordinates and (x,, y,) the set of all pixels coordinates lying in
an area delimited by d,,,, and a cone centered around az. A fast Python routine was
developed specifically for this task, which makes use of Bresenham’s line algorithm
to select (z,,y,). The height parameter was set to 10 meters, consistently with the
standard height for wind measurements. The Sx was calculated every 5°, for a
total of 72 azimuths ranging from 0° to 355°.

3.3.7 Model-DEM height difference

Although not purely based on high resolution DEM, an additional descriptor was
considered that represents the difference in height of the topography used by the
NWP model and the height of the high resolution DEM.
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3.4 Temporal descriptors

The daily cycle is the main driver of thermal winds, and the annual cycle largely
governs the frequency of occurrence of weather regimes that determine particular
flow situation e.g. Bise, Foehn. To account for this, the models were provided with
temporal descriptors. Since both the hour of the day and the day of the year are
circular variables, they required an encoding using sine and cosine functions to
express them in two components:

2m . 2T

cos(hﬂ) ; sm(hﬂ), (3.8)
2m , 2m

cos(d%) ; sm(d%), (3.9

where £ is the hour of the day and d is the day of the year.

3.5 Integration of real-time information

The key idea of nowcasting is to use all the latest available information, typically
NWP forecasts and measurements (e.g. from station data or satellite imagery), to
produce an accurate analysis of weather parameters and extrapolate a forecast
up to a few hours ahead. The use of real-time measurements as predictors for
our models raises two questions, considering that the model must be able to
make prediction for ungauged locations?. First, which measurement is chosen as
predictor at any given location and at a given time; second, how relevant that
measurement is for the final prediction. These are common problems for spatial
interpolation, where the goal is to use point sampled measurements to generate

2we designate as "ungauged locations" points in space where no measurements are available

3.4 Temporal descriptors
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spatially continuous data. To do this, nearly all methods share the same general
estimation formula:

=1

where 2 is the estimated value of the primary variable at the point of interest
xo, 2z is the observed value at the sampled point z;, \; is the weight assigned
to the sampled point, and n represents the number of sampled points used for
the estimation. Methods differ in the way ); is computed. In the environmental
sciences a large number of approaches have been proposed (Li and Heap, 2011),
even in combination with machine learning algorithms, and these are shown to be
often data-specific and variable-specific, i.e. there is not a single best solution but
rather several methods tailored to different problems.

The interpolation of surface wind is a very difficult task, particularly in complex
topography. While several examples exist (Li and Heap, 2011; Reinhardt and
Samimi, 2018; Scheuerer and Moéller, 2015), to the best of our knowledge this
work is the first to consider the interpolation of measurements of surface wind with
an hourly granularity and at very fine scales of down to 100m. Moreover, there
is no established method developed in a flexible® and computationally efficient
way that allows to interpolate real-time data in a statistically optimised approach.
Nowcasting is also an important component of seamless* prediction systems, thus
spatial and temporal consistency must be ensured during the transition from the
analysis (when real-time information has a higher influence on the prediction)
to longer lead-times. These premises lead us to think of interpolation not as
an explicitely separate procedure, but rather an intrinsic component of the ANN
post-processing model.

3A challenging aspect of nowcasting systems is that they must be able to deal with a varying
availability of real-time data. Therefore, several statistical techniques that rely on complete
time-series (e.g. Principal Component Analysis), despite being attractive for historical data
interpolation, are not fit for operational use.

4The word “seamless” usually denotes the paradigm of unifying weather prediction systems and
their components across all time scales.
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3.5.1 Similarity Index

This study proposes a new technique that is inspired by a concept of geostatistical
interpolation methods, the semi-variogram, to rapidly estimate a climatological
A between any pair of points in space. The method consists in calculating the
correlation matrix of the target variable for several pairs of stations, and then train
a model to predict the correlation of each pair based on the absolute difference of
topographical descriptors and geographical coordinates for those locations. This is
expressed as:

i = f(1Xi — X5)), (3.11)

where );; is the Similarity Index between stations i and j, f is the deep learning
model, X; and X; are the values of the topographical descriptors (and optionally
geographical coordinates) at stations i and j respectively. In order to reduce the
impact of spurious correlation, and as a way to isolate the correlation of local
scale weather opposed to synoptic scale weather variability, only pairs of stations
lying at a maximum distance of 30 km from each other were considered. After
this selection, a final number of 10292 pairs was used to fit a model, where every
station had on average 13 neighbours. In order to assess the benefit of using
topographical descriptors, a naive model was considered as a benchmark, which
only considered geographical coordinates and height.

In practice, the Similarity Index is used as follows: for any prediction we calculate
the Similarity Index between the target location and the 10 closest gauged locations,
and then chose the gauged locations with the largest value. Next, the observed
wind speed measurement from that station is included as predictor in the ANN
model, along with the respective Similarity Index value and leadtime (i.e. the age
of the measurements). Ideally, the ANN model is able to weigh the influence of the
chosen wind speed measurement based on the Similarity Index and the leadtime:
the larger value for the Similarity Index, the larger the influence. This method is
similar to regression Kriging in the way it uses a regression model and additional
covariates to generate a semi-variogram.

3.5 Integration of real-time information
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Fig. 3.2.: The Similarity Index model architecture.

An important aspect concerning the Similarity Index is that between gauged
locations (where the value is 1) and the rest of the predicted values there is a "gap"
in the distribution, which is also observable in Fig. 4.1. The cause is very simple:
in the attempt to cover as much territory as possible, the measuring network was
developed in a way that purposely avoids setting up weather stations that are
very close to each other. This results in a small number of stations that show high
correlations (close to 1) of wind speed, and consequently in a very unbalanced
dataset where the occurrences of high values of Similarity Index are extremely rare.
Our way to address this will be discussed in Section 3.8.2.

3.5.2 Stratification: a step towards flow-dependency

Ideally we want a model that is fully flow-dependent, i.e. that calculates the
semi-variogram for every timestep, but that is also robust to noise. This is difficult
to obtain. This problem is analogous to the bias-variance tradeoff, except in
this case the model complexity can be translated to model flow-dependency. The
analogy suggests that in this case too the best approach should be to find a good
balance. Based on this rationale, we decided to stratify flow-dependency based on
synoptic conditions, that is, we calculated a correlation matrix for different weather
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types (the derivation of these classification is presented in Weusthoff (2011)), and
included the weather classification index as a categorical non-ordinal predictor
for the Similarity Index, using an embedding layer®. The ANN model architecture
is shown in Fig. 3.2. The embedding layer encodes each of the 9 weather types
into a tensor of 128 units, and depending on the input weather type it adds the
corresponding tensor to the output of the first hidden layer of the model.

3.6 Probabilistic Models and Bayesian Neural
Networks

This work was developed within an internal code base used at MeteoSwiss to
facilitate research in post-processing using machine learning. The ANNs used in
this project were developed using the python Deep Learning library Keras (Chollet,
2015), running on top of the machine learning platform Tensorflow®. Keras
provides a simple application programming interface to build deep learning models,
while Tensorflow facilitates the machine learning workflow with a comprehensive
ecosystem of tools and resources. Additionally, Tensorflow Probability provides
tools to build probabilistic models, e.g. allowing to have a Conditional Probability
Distribution (CPD) as model output. Several PDFs are used to describe wind speed
frequency distributions. Although none of them is able to generalize all wind
regimes encountered in nature, some present clear advantages (Carta et al., 2009).
In a case study conducted by Carta et al. (2009) well known distributions such
as the Weibull or Gamma distribution explained >99% of variability for multiple
stations. The Gamma distribution of the output y used in this study is defined as:

a, a—1_—By
pdf (y; )=%, (3.12)

>Embeddings are methods for learning vector representations of categorical data. They are most
commonly used for working with textual data, because they capture some of the semantics of
words.

Shttps://www.tensorflow.org/

3.6 Probabilistic Models and Bayesian Neural Networks
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where « and [ represent the concentration and rate parameters of the distribution,
respectively. In practice, these are the values of the nodes in the last hidden layer of
the ANN, which are then fed to the output probabilistic layer as shown in Fig. 3.5.

3.6.1 Quantifying uncertainty

Being able to infer a CPD allows to estimate the aleatoric uncertainty, by adapting
the shape of a distribution. This uncertainty is inherent to the process of interest
and represents the variability that cannot be described by the input data of the
model. In the case of wind speed, or for others meteorological parameters for
that matter, is a consequence of the chaotic nature of the atmosphere and the
measurement errors. In a general way, the predictive distribution for the output y
in such conditions would be:

p(ylz, w), (3.13)

where = represents the input data and w the model parameters that eventually
define o and /3 in our case. Unfortunately, ANN models that use this approach
tend to be miscalibrated. The predictive distributions are overconfident (i.e. under-
dispersive), therefore worsening the reliability of a forecast. The reason for this
deficiency is that conventional methods for probabilistic modelling ignore another
kind of uncertainty: the epistemic uncertainty, also referred to as model uncertainty.
This is related to the erroneous assumption that a model (i.e. its parameters w)
is completely determined by a finite dataset. Instead, one must recognize the
uncertainty of the model itself, represented by its posterior probability p(w|D)
where D is the data used for training. That’s where Bayesian Neural Networks are
introduced, with a new way to formulate the predictive distribution:

plylz, D) = [ plyle,w)p(w, D)duw. (3.14)
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Equation 3.14 represents the Bayesian Model Average (BMA). Rather than bet
everything on a single hypothesis (a single model with fixed w parameters), we use
every possible setting of parameters w, weighted by their posterior probabilities.
Note that in this formulation the probability is not conditioned on w but on D, thus
the idea that the model parameters have been marginalized. Finding an accurate
and fast way to approximate the BMA integral has become an important subject
of research in Deep Learning, and several approaches have been proposed. For
more theoretical background the reader may refer to e.g. Wilson (2020), Wang
and Yeung (2020), Diirr et al. (2020), and Jospin et al. (2020).

3.6.2 Monte Carlo Dropout

A widely used technique for a Bayesian approximation is Monte Carlo (MC) Dropout
(Gal and Ghahramani, 2016). As mentioned in Chapter 2, Dropout is a regularisa-
tion technique used to prevent overfitting during training, whereby weights are
randomly deactivated. The idea behind MC Dropout is to also activate dropout
during inference. Then, for a given input x, one makes several predictions where
each prediction results from a slightly different version of the model. Specifically,
one predicts for the same input = T-times a CPD corresponding to a combination of
weights w;, or in other words one takes samples y ~ p(y|z, D) of T different con-
figurations of w (whereas in a non-Bayesian approach we would simply create an
ensemble by sampling from a model with fixed w). Then, the dropout predictions
are combined to a Bayesian predictive distribution:

1
p(ylz, D) = = > p(ylx, wy) (3.15)

that is shown to be an empirical approximation of Equation 3.14.

3.6 Probabilistic Models and Bayesian Neural Networks
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3.6.3 Assessment of the predictive performance

To assess the quality of a probabilistic forecast, one must assign a numerical score
based on the predictive distribution and the value that materializes. Gneiting,
Balabdaoui, et al. (2007) contended that the goal of probabilistic forecasting is
to "maximize the sharpness of the predictive distributions subject to calibration".
Sharpness refers to the concentration of the predictive distributions and is a
property of the forecasts only. Calibration refers to the statistical consistency
between the forecast distributions and the observations and is a joint property of
the predictions and the events that materialize. Further studies have formalized
this framework for forecast verification by linking it to decision theory, specifically
proper scoring rules (Gneiting and Raftery, 2007; Gneiting and Katzfuss, 2014) and
identified metrics with the most desirable properties. Among these an especially
attractive metric is the Continuous Ranked Probability Score (CRPS) (Matheson
and Winkler, 1976), chosen for this study. The CRPS addresses both sharpness and
calibration, is negatively-oriented and can be interpreted as a generalised version
of the Mean Absolute Error for the case of probabilistic forecasts (Gneiting and
Raftery, 2007), and is therefore expressed in the same units as the target value.
The CRPS is defined as:

CRPS(Fy) = [ R - 1(z > y))de (3.16)

—00

where F' is the cumulative distribution of the predicted distribution and y is the
materialized value. The equation therefore corresponds to the integral of the
Brier score along all real-valued thresholds x. Gneiting and Raftery (2007) gave
an alternative formulation more suited for computation in the case of ensemble
predictions and showed that:

~ 1 ~ ~
CRPS(F.y) = ErplY —y| = 5Ep[Y =V (3.17)

where ¥ and Y’ denote independent random variables drawn from the forecast
distribution associated with F', and E» denotes the expectation value under F’, that
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in our case was evaluated from 100 samples. The CRPS formulated as in 3.17 is
used in this study as loss function £ during training.

To qualitatively assess the calibration of a probabilistic forecast, Probability Integral
Transform (PIT) histograms are an appropriate tool that complement the CRPS.
The use of the PIT is discussed in detail in Gneiting, Balabdaoui, et al. (2007).
Considering a probabilistic forecast and materialized observation pair (F, y), the
PIT is defined as:

PIT = F(y). (3.18)

If the forecast is perfectly calibrated, then the PIT values follow a standard uniform
distribution. This is equivalent as saying that, considering the random variable y,
y is indeed drawn from the predicted distribution F'. One should note however,
that the uniformity of the distribution is a necessary but not sufficient condition for
the forecast to be perfect, as shown by Hamill (01 Mar. 2001). In practice, when
dealing with ensemble forecasts, Eq. 3.18 can also be expressed as:

1

M
PIT = — S 1Y <y). (3.19)

m=1

where M is the number of members of the ensemble, Y is a sample drawn from
the predicted CDF and y is the observed value.

3.7 Preprocessing

In machine learning, preprocessing is an important step where the raw data is

prepared to be used by the model. This typically involves a quality control (e.g.

outlier detection, checking homogeneity of a time series), transformations applied
to the data and the creation of independent subsets of data.

3.7 Preprocessing
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3.7.1 Dataset preparation and transformation

The observational dataset used in this study was filtered with the following criteria:
(a) exclusion of stations with known bad quality measurements, (b) exclusion of
WSL stations located in forests, (c) exclusion of IMIS snow stations, (d) exclusion of
individual suspicious measurements. Steps (a) and (c) were applied under advise
from domain experts. Step (b) was applied considering land-cover information
is not used as predictor in the post-processing model. Step (d) was applied by
excluding sequences of fixed value measurements, which may be artifacts resulting
from software or hardware errors (e.g. frozen measurement device). Missing
observations for gaps of up to three hours were filled by linearly interpolating
in time, and finally an additional cleansing was applied by excluding all time
references with missing values either from the NWP or the observational dataset. In
addition to the collection of wind speed data itself, part of the dataset preparation is
also to collect meta-data about each station. In this sense, a particularly important
information is the height above the ground of an anemometer, which varied greatly
in our dataset (from a minimum of 2 meters to a maximum of 62 meters) and
influences the observed wind speed. Missing values were set to 10 meters, as this
is the default for most weather stations.

Data scaling is a recommended pre-processing step when working with artificial
neural networks. One type of scaling is standardization, which involves transform-
ing the distribution of values of a dataset so that the mean of observed values is 0
and the standard deviation is 1.

T — Tmean
Lstandardized — — (320)
Tstd

where z is the raw value, x,,.., and z, are the mean and standard deviations of
the training dataset respectively. It is important to make sure that the new input
features from independent datasets are always scaled with respect to the training
dataset.
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Fig. 3.3.: Dataset split along spatial and temporal dimension. Split for stations is random,
split for time is sequential.

3.7.2 Data-split

In order to assess the generalisation capability of a model, a three-way split
was applied to the dataset, resulting in training, validation and test independent
datasets. The split was applied along both spatial (the stations) and temporal
dimensions, as shown in figure 3.3. This allows to evaluate both the spatial and
temporal generalisation. The split was randomised in the case of stations, and
sequential for time references. The sequential split in time is necessary because
we must ensure that no test sample is too close to a training sample, as this would
violate the independence of the datasets.

3.8 Models

3.8.1 Baseline

The baseline model used for our evaluation is simply the COSMO-E nearest neigh-
bor grid point around each measurement station.

3.8 Models
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3.8.2 Post-processing model (PP) and
post-processing-nowcasting model (PP-NC)

A fully connected sequential model, known as the Multi Layer Perceptron (MLP)
was considered in this study. This architecture is fairly simple to implement and
is a proven solution for many regression and classification tasks in deep learning.
A Rectified Linear Unit activation function was used and dropout layers were
applied after every hidden layer, using a 50% rate. The architecture is displayed
in figure 3.4. We used the same architecture to train two different models: a
post-processing model, and a post-processing-nowcasting model that also includes
real-time observations as predictors. For a matter of consistency, the two models
where trained under the exact same conditions in terms of hyperparameters and
dataset split. Both models were trained using a custom batch generator that
allowed us to specify the number of different stations, reference times (i.e. the
time that defines the start of a model run) and leadtimes in each batch. After
some trials, we opted for batches composed of 100 stations, 100 reference times
and 50 leadtimes. Although a more systematic way to tune this hyperparameters
would have been preferable, it was out of the scope of this work. We used the
Adam optimization algorithm and specified a learning rate of 0.001. In addition to
dropout as a part of the models architecture, we implemented early stopping as a
regularisation technique.

For the PP-NC model, an important aspect was to learn how to treat high val-
ues of Similarity Index. For the reasons explained in 3.5.1, namely the under-
representation of high values, this was a challenge. Although in our dataset very
few samples of high Similarity Index exist, in the real world, when we consider all
locations in space and not just those where stations are located, these are actually
much more common (see e.g. Fig. 4.2). The question is: how do we counteract
this unbalance? We have found that a relatively simple solution was to over-sample
data points with Similarity Index equal to 1., in other words examples where the
observation of the station itself is used (we refer to them as "gauged" points or
stations). We have tried several options and finally used a proportion of 30% of
gauged stations in our training dataset, which resulted in a good treatment of high
values of Similarity Index without detrimental effects on low values.
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Fig. 3.4.: MLP model architecture used for the PP and PP-NC models.

3.9 Interpretability

3.9.1 SHapley Additive exPlanations

For the interpretation of the model, the SHAP (SHapley Additive exPlanations)
framework (Lundberg and Lee, 2017) was considered for this study. SHAP uses a
coalitional game-theoretic approach to estimate the contribution of each feature to
the model output, i.e. it provides a fast way to estimate Shapley values (Lundberg
and Lee, 2017). In this framework, the different predictors can be regarded as
players in a coalition, and Shapley value determine how to fairly distribute the
"payout", or prediction, among the players. SHAP has unified other methods for
model explanations, such as LIME (Ribeiro et al., 2016) or DeepLIFT (Shrikumar et
al., 2019), under a newly defined class of methods called additive feature attribution
method. It is important to note that this kind of model explanations alone does
not necessarily represent the process of interest, but rather serve as a tool for
knowledge-based interpretation. Just like correlation does not imply causation,
the impact of a feature on a prediction does not imply a direct physical cause,
because explanations that we compute with SHAP are true to the model, and the
model is unaware of physical relationships (unless we enforce them somehow). In
other words, we are not able to strictly determine the true impact of a predictor

3.9 Interpretability
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Fig. 3.5.: A simplified representation of the ANN used to make probabilistic predictions of
wind speed. The two nodes of the last layer are the parameters « and  of the
predicted distribution of .

for the occurrence of a given target value: we are only able to explain how the
model reaches its conclusion. This implies that counter-intuitive explanations can
be observed, particularly in presence of multicollinearity. This question is discussed
in more detail by Chen et al. (2020).

SHAP comes with a few interesting features: we get contrastive explanations, i.e.
every individual prediction is compared with the average prediction. In other
words, the SHAP values tell us how predictors are "pushing" a single prediction
in one direction or the other with respect to an average of many predictions.
While several other methods are generally limited to providing information about
feature importance, with SHAP we are able to explain individual predictions. The
framework also provides a useful set of visualisations to get insights about the role
of each predictor’. For a matter of simplicity, the SHAP values were computed in
this study only for the mean of the output CPD, therefore ignoring the uncertainty
of the prediction.

’see https://github.com/slundberg/shap for some examples
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Results and discussion

4.1 Similarity Index

4.1.1 Model performance

In this section we analyse the results obtained with the Similarity Index model, and
compare a naive solution with the final model. Figure 4.1 shows the predictions
against the true correlations for an independent test dataset, for both the naive
model and the final model. Our best model could make predictions with a mean
absolute error of 0.092, and the goodness of fit is also validated by an R-squared
value of 0.823. Overall, the final model is capable of approximating the correlation
of wind speed measurements between two locations based on their relative geo-
graphical and geomorphological setting. The use of the relative geomorphological
setting in addition to the distance in terms of geographical coordinates (x, y, z)
brings a significant improvement. This is consistent with the assumption that wind
variability in complex topography is highly related to the surrounding topography
of a location. Despite the good results for most samples, there are still substantial
errors in few cases. However, a visual inspection could determine that the error
distribution is close to Gaussian. This indicates that there is no systematic source
of error and that it is random, likely due to unknown factors influencing the true
correlation and/or to errors in its estimation.

A possible evidence for the latter is the fact that the MAE (shown in Table 4.1)
is higher for less frequent weather classifications, for which correlations are less
robust. To further evaluate the fitness of the model, we analysed the model SHAP
explanation and inspected some examples of the Similarity Index computed over a
region in the northern Alps.
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Tab. 4.1.: MAE for each CAP9 weather classification.

CAP9code\ 0 1 2 3 4 5 6 7 8
MAE ‘0.07 0.09 0.09 0.09 0.09 0.08 0.10 0.13 0.10

104 R-squared: 0.411 e ] R-squared: 0.823
MAE: 0.181 MAE: 0.092

True correlation
occurrences

-04 =02 00 02 04 06 0.8 1.0 -04 -0.2 0.0 02 04 06 0.8 1.0
Similarity Index Similarity Index

Fig. 4.1.: Predicted Similarity Index against the true correlation for station pairs of an
independent test dataset, for a naive model (left) and the final model (right).

4.1.2 Interpretation of the results

The analysis of SHAP values highlights the importance of the difference in elevation
(DEM), as well as the TPI at a 500 meters scale. Our interpretation is that elevation
is a main factor to determine the local weather regimes to which a location is
subject, while the TPI at this particular scale is the most useful feature to distinguish
between sheltered or exposed locations. The weather type also shows a significant
effect on the overall prediction of the Similarity Index. While a characterisation
of the contribution of each specific weather type is difficult with the available
data, we believe a high degree distinction can be made between situations with
strong and weak synoptic forcing. As shown in Figure 4.3, the former and the
latter have respectively a positive and negative average impact to the final model
output. This difference is likely due to the scale at which atmospheric dynamics
take place, as well as their magnitude. For instance, in a situation with strong large
scale advection, or during an event such as the passage of a cold front, wind speed
varies similarly across large regions and different geomorphological settings. On
the contrary, in the absence of large-scale or meso-scale dynamic systems we see a
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Fig. 4.2.: Mean absolute impact for each predictor of the Similarity Index model.

High Pressure over Central Europe | [INNENEGENED
Westerly flow over Southern Europe, cyclonic ]
West-SouthWest, cyclonic I
High Pressure over the Alps ]
North, cyclonic I
Westerly flow over Northern Europe [ ]
West-SouthWest, cyclonic, flat pressure I
East, indifferent B
NorthEast, indifferent 1
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SHAP value (impact on model output)

Fig. 4.3.: Average impact of each weather type classification (CAP9) on the predicted
Similarity Index. Weather situations with strong synoptic forcing (such as low
pressure systems or strong large scale advection) have a positive impact on the
final output, while situations with weak synoptic forcing (such as high pressure
systems) have a negative impact.

prevalence of small-scale weather regimes (e.g. the diurnal cycle) and localized
effects of topography (e.g. crest speedups) in determining wind speed variability.

Figure 4.4 shows an example of the Similarity Index for a region of central Switzer-
land (see A.2), calculated with respect to the weather station (labeled "PIL") located
on the Pilatus mountain massif at 2105 meters above sea level, for all weather
types. The spatial distribution reflects the importance of predictors: the difference
in elevation determines most of the variability, and topographical descriptors high-
light specific features such as ridges, crests and narrow valleys. Moreover, it is
evident how the model responds differently to weak and strong synoptic situations,

4.1 Similarity Index
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NorthEast, indifferent West-SouthWest, cyclonic, flat pressure Westerly flow over N. Europe

East, indifferent High Pressure over the Alps North, cyclonic

West-SouthWest, cyclonic High Pressure over C. Europe Westerly flow over S. Europe, cyclonic

-0.2 0.0 0.2 0.4 0.6 0.8 1.
Similarity Index

Fig. 4.4.: Similarity Index with respect to the weather station located on the Pilatus moun-
tain massif at 2105 meters above sea level, for all CAP9 weather classification
codes.
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for example in CAP9 classification codes 7 (High pressure over Central Europe)
and 8 (Westerly flow over Southern Europe). Interestingly, the difference between
the two fields is stronger at low altitudes, but values are comparable for elevated
locations and specifically mountain crests. Another example is shown in B.1 for a
station located in the valley.

4.1.3 Representativeness of the measurement
network

An interesting aspect of the Similarity Index is the ability to quantitatively assess
how well wind speed at a given location is explained by the measuring network. In
our application, for each target location we use the real-time wind speed measured
from the station with the largest Similarity Index. It is therefore interesting to look
at the maximum value of Similarity Index for each grid point in the area of study, to
get an idea of which areas are going to benefit more from the proposed technique.
This is shown in Fig. 4.5, where the maximum values have been averaged over
all weather types. It is clear that regions of flat topography and valley bottoms
are the most well represented, but we also observe large values on crests at high
altitudes. In contrast, small values are generally observed on slopes. This result
corresponds to our expectations because it reflects the geomorphological setting of
stations in the study regions, that are either located on crests (e.g. SLF stations)
or flat topography but not on slopes, which are therefore not well represented. In
general, this result is expected for the whole network used in this study, because
very few stations are located on slopes. For this very reason we also expect that
the predicted values of Similarity Index at these locations are the most uncertain,
because it is where the model relies the most on extrapolation rather than known
examples. This aspect ties in on a broader discussion about the paradigms of
weather monitoring. Traditionally, standardized and homogeneous conditions
have been preferred in the design of monitoring systems. While this certainly
makes it easier to analyse and compare historical time series, it has a detrimental
effect on use cases that value a well-balanced diversity of conditions, such as
training a deep learning model with generalizing capabilities. Ideally, all kinds of
geomorphological settings should be represented, with varying conditions in terms

4.1 Similarity Index
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Fig. 4.5.: Maximum Similarity Index chosen among all reference stations, averaged over
all CAP9 weather types.

of land cover as well, provided that meta-information is available. For instance, it
would be interesting to account for the effects of terrain roughness.

Overall, we believe the Similarity Index has the potential to help in the development
of a monitoring network, as it provides all the information needed to identify
optimal locations for the installation of new stations. Nevertheless, this remains
a non-trivial task that requires to evaluate all contributions of existing and new
potential weather stations simultaneously. Moreover, one might chose to combine
the results with additional information (e.g. density of population) based on the
scope of the analysis.
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4.2 Post-processing and nowcasting

This section presents the results for the wind speed post-processing and nowcasting
model. First, we will compare the performance of different models. We will
consider COSMO-E as a baseline, a normal post-processing model (PP) and a
post-processing-nowcasting model (PP-NC). For our assessment we will use the
CRPS as our objective function, and PIT histograms to qualitatively discuss the
reliability (calibration) of our models. Additionally, we will discuss a few examples
of predictions. We will then focus on aspects specifically associated with the use
of real-time measurements and the role of the Similarity Index. A section will
be dedicated to model interpretation, where we will analyse SHAP values to get
insights into our predictors while also discussing whether or not the model behaves
consistently with our expectations based on prior knowledge.

4.2.1 Models comparison

For this analysis, all metrics were evaluated on a dataset of unseen timesteps and
unseen stations (see Section 3.7). Additionally, for the PP-NC model, we considered
two cases: one for which the real-time measurement of the target station itself
is used (from now on referred to as "PP-NC-gauged") and another that only uses
real-time measurements from other stations. The latter is analogous to performing
cross-validation for interpolation procedures, as it gives an indication of how the
model performs in locations that are further away from weather stations. In order
to avoid any confusion we want to stress that PP-NC and PP-NC-gauged are the
same model, only evaluated in different conditions.

Figure 4.6 shows the wind speed CRPS of unseen stations calculated for leadtimes
up to 10 hours. Compared to our baseline, all models significantly improve
wind speed forecasts. As expected, PP-NC-gauged shows a sharp decrease in
forecast errors for shorter leadtimes. This suggests that the model is able to
incorporate real-time information and progressively rely on post-processing for
longer leadtimes in a seamless way. In other words, the procedure commonly used
in nowcasting systems known as blending is an intrinsic part of the model. A similar
decrease, although much smaller in magnitude, is observed for PP-NC predictions

4.2 Post-processing and nowcasting
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Fig. 4.6.: Top: mean CRPS from analysis time (leadtime = Oh) up to 10h leadtime.

Bottom: mean CRPS for each hour of the day.

at ungauged locations. This indicates that the use of real-time information, as
determined by the Similarity Index, is effective even at distant locations. The
bottom plot also presents the mean CRPS for each hour of the day. Note that for
PP-NC-gauged the values oscillate because we evaluated model runs every 3 h. We
observe a lower improvement of post-processed forecasts during the afternoon.
This deficit in performance may be due to the

PIT histograms for the considered models are presented in Fig. 4.7. The dashed
black line represents a perfectly calibrated forecast, for which PIT values would
be uniformly distributed (since we consider 10 bins for our histograms, that
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Fig. 4.7.: PIT histograms. The dashed black line represents a uniform distribution, that
would be resulting from a perfectly calibrated forecast.

is equivalent to a uniform probability density of 0.1). The shape of the PIT
histograms help us understand the nature of the model errors. The baseline
model, represented in blue, is highly overconfident (underdispersive), missing
occurrences of both extremely low and high wind speed. The slight asymmetry of
the distribution towards low PIT values also implies a climatological overestimation
of wind speed. Both PP and PP-NC models improve the reliability of wind speed
forecasts considerably, and the difference between the two is barely noticeable.
The rightmost bin indicates that some extreme wind speed values are missed by the
model forecasts. The distribution of wind speed for completely missed high wind
speed events (i.e. when all members of the ensemble are lower than the realized
wind speed and the PIT value is equal to 1) is shown in B.4. We believe that
these missed occurrences are in part due to a well known problem of regression
tasks, where minimizing metrics such as the MAE (or the CRPS in our case) often
leads models to predict values that are close to the mean. This unwanted effect
can also be attributed to the training dataset being unbalanced (wind extremes,
which are arguably the most interesting aspect of wind forecasting, are very rare).
Additionally, another part of this lack of calibration could be attributed to highly
unpredictable events such as thunderstorms resulting from localized convection.
The left half of the histograms present an unusual shape. On one hand, the
asymmetry indicates a climatological bias towards underestimation of wind speed,

4.2 Post-processing and nowcasting
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but at the same time the leftmost bin is resulting from a large number of missed
low values of wind speed. This is likely the result of a combination of factors
that are difficult to identify. It is helpful to understand what contributes to the
higher density of extremely low PIT values. Let us take PIT values equal to zero
for instance, which occur when the realized wind speed is lower than all predicted
ensemble members sampled from the CPD. Of the 50’951 occurrences, 73% resulted
from missed forecasts of wind speed equal or below 0.2 m/s (this threshold is
commonly used to define "calm" wind situations) and 90% for wind speed equal
or below 1 m/s. The full distribution of wind speed is shown in B.5. It is also
worth noting that wind speed values of this magnitude are often susceptible of
measuring errors due to deterioration of cup anemometers, specifically they may
underestimate weak winds (Pindado et al., 2014). This would introduce some
unpredictable noise in our dataset, which in turn could partly explain the poor
performance of the model.

In order to compare the baseline and the PP-NC model for actual predictions, while
also looking at observed values, we used meteograms. We present probabilistic
forecasts with median values of the ensemble represented by solid or dashed lines
and inter-quantile ranges (middle 50% and 90%) shown as shaded areas.

4.2.2 Focus on nowcasting

In this section we discuss the use of real-time information by the PP-NC model.
This includes a comparison of the model performance for ungauged and gauged
targets, as well as a focus on the analysis (i.e. predictions for Oh lead time) of wind
speed. Envisaging future developments, the goal here is also to provide an objective
framework to evaluate this kind of deep learning models for nowcasting.

Sources of error

As already presented in Fig. 4.6, the CRPS decreases sharply for target locations
where measurements are available. We deduce that, when the input real time
observation is accompanied by a high Similarity Index, the model gives more
importance to the observation. The CRPS reaches a minimum of 0.42 at Oh lead
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Fig. 4.8.: Examples of analysis meteograms for wind speed at Biere (BIE), using the
measurements at the station itself.

time. Inevitably, this raises the question: if we are using the target wind speed
measurement itself as predictor, why is the error not zero at Oh leadtime? Before
we discuss the possible answers, it is useful to better understand the nature of
this remaining error. To do that, PIT histograms come again to rescue. Figure 4.9
shows the PIT histogram for the PP-NC model at gauged locations, for predictions
at Oh leadtime. PIT values were calculated on the independent dataset with unseen
stations. Since the higher density occurs for central bins, it is evident that the
forecast is overdispersive. That is, the average spread of the predicted ensemble is
too large. Therefore, we can affirm that a significant part of the CRPS is due to an
over-quantification of the uncertainty, rather than just systematic and conditional

4.2 Post-processing and nowcasting
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Fig. 4.9.: PIT histogram for the PP-NC model at gauged target locations, for predictions at
Oh leadtime (analysis). The N-shape of the histogram indicates that the forecast
is overdispersive.

biases. This can be further verified by looking at meteograms of the wind speed
for the analysis. An example is presented in Fig. 4.8. The median of the PP-NC
ensemble prediction, shown as a dashed line, is consistently very close to the
observed values. Despite that, the spread of the ensemble remains relatively large,
particularly for stronger winds. In B.6 we present the meteograms for the same
predictions without using the observation of the station itself.

Ideally, at gauged locations (for which values of Similarity Index are equal to 1)
and for Oh leadtimes, the model should only rely on the observations to predict a
virtually infinitely sharp ensemble (i.e. a deterministic forecast) that coincides with
the observation itself. This is not the case. We deduce from these arguments that
the model has problems in using the real time observations correctly according to
the leadtime, and this can be shown explicitely by aid of model explanations using
SHAP values. Before we continue, let us remember an aspect that will help make
sense of SHAP values. As already mentioned in Section 3.9, with SHAP we get
contrastive explanations. This means that all model predictions are compared to
an average prediction (also called baseline), that is calculated from a background
sample (in our case it consists of 1000 examples), and SHAP values represent the
contribution of each feature to get from the baseline to the actual model output.
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Fig. 4.10.: Heat map visualizations of the average impact on the model output magnitude
for each predictor, for the PP-NC model at ungauged (left) and gauged (right)
locations.

For all our explanations, the baseline value is 2.14 m/s. So if we were to predict a
wind speed of 1 m/s, the sum of SHAP values from all predictors would be equal to
-1.14 m/s. Finally, we recall that the explanations were conducted by considering
the mean of the output CPD, so the uncertainty does not play a direct role.

To see how our model behaviour changes with the leadtime, we can aggregate
SHAP values based on leadtimes from Oh to 10h, and compute the average for each

predictor. This is shown in Fig. 4.10, for both the ungauged and gauged settings.

Note that the pixel value scale is not the same for the two figures, as we wanted
to highlight the variation rather than the magnitude itself. First, we note that
the observed wind speed has a much larger influence at gauged stations, which
confirms what we already stated before. That is, the model can use the Similarity
Index as a weight for the observed value. In both cases we see a change in the
importance of predictors as we go from Oh to 10h leadtime: the average impact of
the observed wind speed descreases while it increases or stays constant for other
predictors. Therefore, to some degree the model is able to weigh predictors based

4.2 Post-processing and nowcasting
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Fig. 4.11.: Average relative contribution of post-processing related predictors and now-
casting related predictors to the model output magnitude. PP-NC contributions
at ungauged and gauged locations are shown with solid and dashed lines
respectively. From the perspective of seamless prediction methods, this figure
can be interpreted as an average blending function of the model.

on leadtime, but not sufficiently. This is particularly true for gauged locations.
If we combine the post-processing related predictors and the nowcasting-related
predictors in two separate groups, take the sum and normalize for the total, we can
calculate their relative contribution to the model output as shown in Fig. 4.11. For
the gauged locations, the relative contribution is roughly the same at Oh leadtime,
when ideally we would expect the nowcasting component to be the main factor.
On the other hand, the contribution at 10h leadtime is in line with what we would
expect based on the average autocorrelation of wind speed for our stations (see
A1).

Model limitations

We now have enough information to formulate some hypotheses about why the
model does not behave exactly as expected concerning the use of real-time infor-
mation at gauged locations and for very short leadtimes (we focus on the analysis
because it is where this misbehavior is more evident). So far, we determined that
there are two sources of error: one is the overestimation of the uncertainty, the
other is the fact that the observed wind speed does not receive enough importance.
Let us focus on the former. We believe that there are two fundamental issues at play.
One is regarding the parameterization of the Gamma distribution (see 3.12), which
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makes it inherently more difficult (from the point of view of a neural network) to
produce distributions with a large mean and small standard deviation. These are
defined as

(6%
=_, 4.1
% E 4.1)

o= \/Ba, 4.2)

where « and 3 are the concentration and rate parameters respectively. From this
relations we deduce that for a given mean value (the ratio of o and /5 remains
constant), the magnitude of « and § increase fast as the standard deviation
decreases. An example is shown in B.2 and B.3: if we were to predict a distribution
centered around 15 m/s and a standard deviation of 0.43 m/s, concentration
and rate parameters would need to be 1215 and 81 respectively. For a standard
deviation of 3.87 that would be 15 and 1. Therefore, for a relatively small difference
in terms of model output, the change in the distribution parameters is very large
and may pose additional difficulty for the model in distinguishing between different
situations. A possible solution that could be implemented to address this is to
change the predictive distribution, e.g. to a normal distribution truncated at
zero to avoid negative values. An attempt was made during this project, but for
unknown reasons (probably a software issue with Tensorflow Probability) the
training program failed during execution.

Another issue is related to the way we introduce empirical uncertainty. When we
formulate the predictive distribution using the BMA, we marginalized the model
parameters. That is, the predictive distribution is not directly dependend on the
model parameters w but ultimately on the training data D. The consequence is

that the composition of D heavily determines uncertainty in the model predictions.

Predictions for situations that are very well represented (e.g. low wind) have
very little empirical uncertainty (so they are almost identical to a non-Bayesian
equivalent), whereas poorly represented examples (e.g. high wind speed) have
large empirical uncertainty. While this approach is justified for most situations,

4.2 Post-processing and nowcasting
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using the target value as a predictor in the case of analysis at gauged locations defies
its underlying logic. For the empirical uncertainty associated with an observed
wind speed in such case is by definition null (if we do not account for measurement
uncertainty, but this is an entirely different issue) irrespective of how well it is
represented in the training dataset. This is a straightforward argument for us, but
the model is not aware of it and predicts with high empirical uncertainty even
when this is not needed. In order to substantiate this hypothesis a model was
trained to predict only the analysis at gauged locations, and it yielded similar
results: a still relatively high CRPS of 0.21 and too large uncertainty for large wind
speed. However, when the same model was trained without dropout, the CRPS
dropped to 0.03. To overcome this problem, a promising approach would be to add
constraints to the model, such that it is forced not to introduce empirical uncertainty
under specific circumstances. This idea of adding knowledge-based constraints
to machine learning models is becoming increasingly popular, and a strong case
for its implementation in the atmospheric sciences is made in (Kashinath et al.,
2021).

As we mentioned in the beginning of this section, a second source of error con-
cerning the use of real time information is that the observed wind speed does
not receive enough importance for very short leadtimes. We speculate that this
behavior is related to gradient-based optimization. During each training step,
the model parameters are updated such that more importance is given to those
features that explain more variability in the training batch, irrespective of their
actual "relevance" (this is something of which we, as humans, are aware but not a
machine). Consequently, at short leadtimes, even though the real time information
explains most of the variability, the other predictors still explain a part of it too
and the model is tricked into relying on them instead of just using the real time
information. Regardless of the true reason for this unwanted behavior, adding
knowledge-based constraints would be an effective measure in this case too as
explained in the above paragraph.

On the effect of the Similarity Index

Since more importance is given to wind speed observations at gauged locations,
we already determined that the Similarity Index is able to act as a weight for the
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observed wind speed. However, the distinction between ungauged and gauged
location is a fairly obvious one. To actually look at the impact of the observed wind
for different values of Similarity Index, we can look at SHAP values of the PP-NC
model at ungauged locations. Specifically, it is useful to look at the SHAP values
of observed wind speed as a function of the Similarity Index. This is shown in
Fig. 4.12. The color indicates the magnitude of the input value of observed wind.
The impact on the model output magnitude increases with the Similarity Index.
We believe this result is particularly significant in that it proves that the Similarity
Index is a useful metric and it is fit for its purpose. While certainly there are ways
to improve its derivation, and perhaps define it more formally, these results provide
a proof of concept.

Ways to explore potential improvements for the Similarity Index include: the use
of different criteria for stratification instead of the weather type; an additional step
that scales the Similarity Index based on the proportion of variances of a pair of
stations, thus considering a "predictand" and a "predictor" station. Such procedure
would effectively transform the Similarity Index into a metric that is analogous to
the /3 coefficient of a simple linear regression.

4.3 Model explainability

In this section we explore some of the results obtained by using SHAP for model
explainability, from a more general standpoint than just from the point of view
of nowcasting. We will look at how our predictors affect predictions and look for
interesting co-dependencies, while also discussing some counter-intuitive results.
Then, we will present examples of how SHAP values may be used to interpret
single predictions. The goal of this section is to provide examples of how model
explainability can be useful to validate machine learning models and build thrust
in their results. We should always keep in mind that these explanations represent
how the model arrives to its predictions without any knowledge of the process of
interest, but based exclusively on statistical relationships that it integrated in a
non-linear fashion. In this context, the main point of model explainability is not
one of knowledge discovery, but rather of confirmation.

4.3 Model explainability
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Fig. 4.12.: Scatter plot representing SHAP values for the observed wind speed as a function
of the Similarity Index. Each dot represents a sample prediction, with roughly
40’000 predictions being displayed, and it is colored based on the actual input
value (not normalized) of the observed wind speed. The impact on the model
output magnitude increases with the Similarity Index. The gaps for high values
occurs simply because very few stations in our dataset are sufficiently similar
to each other.

4.3.1 Summary visualization

A convenient way to summarize the results of model explanations with SHAP is by
using the so-called "beeswarm" plot. Like a box-plot it is able to convey information
about the data distribution, but it does so by displaying individual samples as points,
and adjusting their position in order to reduce overlaps. These points can than be
color-coded based on the feature’s input value. This visualization is presented in
Fig. 4.13. Approximately 40’000 sample predictions are displayed in the figure,
where each prediction corresponds to a set of 20 points (one for each feature)
placed along the horizontal axis. Features are sorted by decreasing importance from
top to bottom. We will only look at the most relevant ones. Without surprise, the a
relevant feature of the model is the COSMO-1 wind speed. Small values of COSMO-
1 wind speed have a relatively low, negatively oriented impact on the model output,
whereas positively oriented impact for large values can be much higher. This is due
to the fact that the baseline of 2.14 m/s is also relatively low compared to the range
of values in the sample. Among our topographical descriptors, the model-DEM
height difference is the most important feature. Low feature values indicate when
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the DEM height is higher than the model height, and we observe a large positive
impact on the model output in such situations. A similar result is shown for the
TPI at 6000m scale (although in this case the values are to be interpreted with the
opposite sign). Both features seem to correct systematic and conditional biases
related to the exposure of a location in relation to a sub-grid scale (narrow valleys
and crests) and to 6000m scale (wide valleys and ridges). The results for the
measurement height are a good indication that diverse conditions can be included
successfully in the training dataset, provided that the meta-information is reliable.
The Sx proved to be an important topographical descriptor, being the only one to
greatly impact model output both positively and negatively. We note that since this
descriptor if flow-dependent, its usefulness strongly depends on the accuracy of the
NWP prediction of wind direction. Therefore, we can expect that its importance
for nowcasting applications is generally higher than for post-processing at medium
range predictions. Interestingly, there are a few examples of strong COSMO-1 wind
gusts having a negative effect on the model output. This is an unexpected behavior,
probably resulting from collinearities between COSMO-1 wind gusts and other
predictors (such as COSMO-1 wind speed or observed wind speed). The same
visualization for gauged locations is shown in B.7

4.3.2 Feature dependence

By combining information about multiple features, we are able to get insights into
their relationship within the model. We will look at two interesting examples. First,
let us consider the effect of the Sx topographical descriptor and the COSMO-1
wind speed, shown in Fig. 4.14 on the left. On the vertical axis is the impact
of the Sx on the model output, on the horizontal axis its input values and each
prediction represented by a single dot is colored based on the value of COSMO-1
wind speed. We observe that for low values of COSMO-1 wind speed samples
are distributed almost horizontally, indicating a weak impact of the Sx on the
model output, whereas in the case of high values the effect of the Sx is greater. We
can deduce that the Sx has a dampening and amplifying effect that depends on
COSMO-1 wind speed. Upwind, exposed slopes increase wind speed proportionally
to its magnitude, and to opposite happens for downwind, sheltered slopes.

4.3 Model explainability
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CO1 wind speed
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Measurement height
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Fig. 4.13.: Beeswarm plot representing SHAP values of the PP-NC model at ungauged
locations for each model predictor, color-coded based on feature’s input values.
One sample prediction corresponds to a set of 20 points, one for each feature,
placed along the horizontal axis.
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of the height difference between COSMO-1 model topography and the high
resolution DEM.

Fig. 4.14.:

Another interesting example of feature dependence is regarding the diurnal cycle.
Well known surface wind circulation patterns are particularly important in the
alpine area. We can therefore expect that the impact of the hour of the day is not
equal everywhere, but is strongly dependent on the geomorphological setting of
a location. Thanks to SHAP values we can verify this, as shown in Fig. 4.14 on
the right. The figure shows the impact of the cosine component of the hour of
the day (which is in phase with the day-night cycle, with -1 occurring at midnight
and 1 occurring at noon) as a function of its input value and color-coded with
respect to the value of the height difference between COSMO-1 topography and
an high resolution DEM. We observe that in valley bottoms (red dots) there is a
positive impact on wind speed during the day and a negative impact during the
night, whereas the opposite is true for mountain crests (blue dots). This confirms
our expectations based on prior knowledge, and it is a good indication that the
model integrated relevant relationships in an automated way.

4.3 Model explainability
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PP-NC @100m - 2019-06-14T03:00
Impact of Sx 500m (CO1 wind direction)

COSMO-1 @1km - 2019-06-14T03:00
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Fig. 4.15.: On the left, the COSMO-1 wind speed magnitude field displayed with wind

vectors. On the right, the impact of the Sx topographical descriptor on the
model output. The spatial distribution of SHAP values for Sx closely follows
the magnitude and direction of COSMO-1 wind field.

4.3.3 Spatial SHAP analysis

In the previous sections we have only considered SHAP values for a set of random
samples from our test dataset. While this allows us to make general interpretations
about the model, they are somewhat limiting when we are interested in the spatial
structure of SHAP values and whether it looks realistic or not. By computing SHAP
values over a spatial domain for specific timesteps, we are able to interpret single
events. An example of this is presented in Fig. 4.15 for the impact of Sx, with the
wind speed vectors of COSMO-1 displayed to the left. As expected, the Sx has
a positive impact on upwind slopes and a negative impact on downwind slopes.
Moreover, the magnitude of the impact appears proportional to the input wind
speed from COSMO-1.

Figure 4.16 shows another example of a prediction in our study domain, along
with the impact of some of the predictors. The upper right plot represents the
impact of the real-time observations of wind speed. Intuitively, this is a way to
visualize the intrinsic interpolation of the PP-NC model. For an additional example
see B.8.
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Fig. 4.16.: A single prediction on the study domain with the impacts of some of the

4.3 Model explainability

55



NEU - 2019-09-20T03:00 - 1h leadtime - SI1 0.79

1.30 = NC observed wind speed -

1.00 = NC Lead time -

3.72 = CO1 model-DEM height difference -
22.51 = TPI 6000m smoothed

0.79 = NC Similarity Index -

2.21 = CO1 wind speed 4

21.64 = Measurement height -

0.98 = sine day of year

0.10 = South-North derivative 10000m -

4.87 = CO1 wind gust q

0.04 = West-East derivative 10000m -
cosine hour of day -

0.19 = cosine day of year q

4.02 = cosine Valley Index 1000m A

Sum of 6 other features
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Fig. 4.17.: Model explanation of a single prediction at Neuchatel (NEU). The horizontal
axis represents the impact of a predictor on the final output of the model, in
blue and red for negative and positive impact respectively. The bottom plot
shows the final prediction compared to the baseline, where the difference
between the two is the sum of all contributions in the above plot.

4.3.4 Explaining individual predictions

Another interesting use of SHAP values is to represent explanations of single
predictions, and directly observe how each predictor impacted the model output
for each specific case. An example is presented in Fig. 4.17. In this situation, we
see a good example of how despite the large wind speed input of COSMO-1 the
model predicts a relatively low value, due in great part to the influence of the Sx,
indicating that the location in a sheltered position relative to the direction of the
wind. Another example is shown in B.9.
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Conclusions

Following recent efforts in this domain, ANN-based post-processing of surface
wind speed in complex topography was further investigated. This work helped
in consolidating and further developing a new framework used at MeteoSwiss to
facilitate research in this field. Several contributions were made to the code base,
including bug fixes and additions of new tools and resources.

A new metric called Similarity Index was developed. The Similarity Index allows
to estimate the correlation of wind speed between two locations, based on their
geographical position and geomorphological settings. For its derivation, we trained
an ANN that also included a weather type classification as predictor, as a way
to stratify weather conditions and make a step towards flow dependency. The
model was able to estimate correlations with a mean absolute error of 0.092
on an independent test dataset. The Similarity Index was discussed, and we
highlighted the importance of topographical predictors as well as the weather
situation in determining the spatial correlation structure in complex topography.
Additionally, we showed that the Similarity Index conveys useful information about
the representativity of the measuring network.

A new methodology to include real time information in ANN-based post-processing
of surface wind speed was developed. This approach makes use of the Similarity
Index to find the most representative wind speed observation at any given location
and at any given time, and determine the impact of said observation on the final
output of the model. In practice, we successfully introduced real time observations
of wind speed in an optimized way that mimics geostatistical methods of interpo-
lation such as regression Kriging, but without sacrificing performance since the
Similarity Index can be computed offline. The model that included this nowcasting
component has shown a significant improvement in performance compared to the
baseline and a simple post-processing model, with a sharp decrease of CRPS at
gauged locations but also a noticeable decrease at locations further away from
gauged locations. This last aspect is particularly important in that it supports
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the generalising capabilities of our new methodology. The way the model uses
real-time information was discussed, indicating a correct overall behavior but also
a few shortcomings, for which potential solutions were suggested.

The state of the art explainability technique SHAP was used to provide insights
into the black box model. We have shown how SHAP values may be used in several
ways to gain trust in ANN post-processing models, by providing direct examples
for our application.

5.1 Outlook

The Similarity Index has proved to be a useful metric in our case. Conceptually, the
most important aspect is that we are able to mimic a statistically optimized spatial
interpolation without the need to compute semi-variograms at every timestep.
Building on top of this core idea, we believe there are still ways to improve its
derivation or even reformulate it. For instance, it would be interesting to develop
alternative solutions for stratification based on weather conditions, making use
of additional meteorological parameters. The increasing amount of observational
data coming from different sources (and perhaps including crowd-sourced data)
calls for specific algorithms to ensure that only high quality measurements are
included in the training dataset. Additionally, collecting accurate meta-information
about weather stations may allow to make better use of measurements coming
from a diverse set of conditions. We believe further improvements in this field will
increasingly be focused on finding ways to constrain machine learning models with
our prior knowledge, as suggested in section 4.2.2.
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Data and methods

Tab. A.1.: Number of stations in the measuring network operated by each organization.

Name of the organisation

Number of stations

ARPA Lombardia

Autonome Provinz Bozen - Siidtirol

Botanisches Institut der Universitét Basel
Bundesamt fiir Umwelt

Deutscher Wetterdienst

Eidg. Forschungsanstalt WSL

Eidg. Institut fiir Schnee- und Lawinenforschung
Kachelmannwetter GmbH

Kanton Aargau

Kanton Graubiinden

Kanton Thurgau

Kanton Wallis; Dienststelle fiir Umweltschutz
Kanton Wallis; Dienststelle fiir Wald und Lands...
Lufthygieneamt beider Basel

MeteoGroup Schweiz AG

MeteoSchweiz

Ostluft

Regione Autonoma Valle d’Aosta

Repubblica e Cantone Ticino

République et canton de Neuchatel

Schweizer Armee - Luftwaffe

Schweizerischer Nationalpark

Swiss Permafrost Monitoring Network
Windguru / Martin Schuler

Zentralanstalt fiir Meteorologie und Geodynamik
inNET Monitoring AG

Total

51
70
1
8
42
17
180
14
3
8
20
5
4

739
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Fig. A.1.: Mean autocorrelation of wind speed for all selected stations from our dataset.

Chapter A Data and methods




47.1°N

(o]

LuzmMT

Luzern (LUZ)

47.05°N

47°N

46.95°N

46.9°N

z T Cafro 8N

i)
y
o

Fig. A.2.: Spatial domain used to present results of Similarity Index and PP-NC model.
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NorthEast, indifferent West-SouthWest, cyclonic, flat pressure Westerly flow over N. Europe

High Pressure over the Alps North, cyclonic

West-SouthWest, cyclonic | High Pressure over C. Europe Westerly flow over S. Europe, cyclonic

-0.2 0.0 0.2 0.4 0.6 0.8 1.
Similarity Index

Fig. B.1.: Similarity Index with respect to the weather station located in Alpnach for all
CAP9 weather classification codes.
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Fig. B.2.: Experiment showing sample Gamma distributions centered around 15 m/s with
different parameterizations, resulting in increasingly sharp distributions.
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Fig. B.3.: Concentration parameter of a Gamma distribution centered around 15 m/s, as
a function of the standard deviation. The concentration parameter displays
an asymptotic behavior as the distribution approaches a standard deviation of
zero.




66

0.12 A1

o o i
o o =
[=)] co o
1 1 L

Probability

0.04 A

0.02

0.00 -
0 5 10 15 20 25 30

Wind speed [m/s]

Fig. B.4.: Distribution of observed wind speed for events where all ensemble members of
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Fig. B.5.: Distribution of observed wind speed for events where all ensemble members of
the PP-NC model prediction were larger than the observed value.
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Wind speed analysis meteograms at Biére (BIE) - 9h step
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Fig. B.6.: Examples of analysis meteograms for wind speed at Biére (BIE), without using
the measurements at the station itself.
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Fig. B.7.: Beeswarm plot representing SHAP values of the PP-NC model at gauged loca-
tions for each model predictor, color-coded based on feature’s input values. One
sample prediction corresponds to a set of 20 points, one for each feature, placed

along the horizontal axis.
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Fig. B.8.: A single prediction on the study domain with the impacts of some of the
predictors.
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1.41 = CO1 wind gust -

-187.33 = TPI 6000m smoothed -
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Fig. B.9.: Model explanation of a single prediction at Poschiavo / Robbia (ROB). The
horizontal axis represents the impact of a predictor on the final output of the
model, in blue and red for negative and positive impact respectively. The bottom
plot shows the final prediction compared to the baseline, where the difference
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