

How do the sea and the land conditions affect the coastal breezes? 20 days analysed from WRF simulations in the Gulf of Cádiz (Iberian Peninsula)

Román-Cascón, C., Mulero-Martínez, R., Bruno, M., Yagüe, C., Lothon, M., Lohou, F., Álvarez, Ó., Gómez-Enri, J., Izquierdo, A., Mañanes, R., and Adame, J. A.

OBJECTIVE

To investigate the role of the surface conditions (sea and land) in the characteristics of the coastal breezes

Model version	WRF v 4.2.2
Domains	9, 3, 1 km (180x180 grid points)
Initial and boundary conditions	NCEP FNL 0,25 ^o
PBL	YSU / MYJ
Surface layer	Monin-Obukhov (Janjic Eta)
Land surface	Noah
Vertical levels	51
Analysed period	20 days (2020-08-01 to 2020-08-20)

METHOD

Evaluation with: Coastal/inland stations Oceanic buoy Satellite altimetry data*

WRF SENSITIVITY EXPERIMENTS (artificial) Land cover Soil moisture SST

WRF **overestimates** the wind speed, especially during nighttime influenced by synoptical NW.

* not shown in this presentation

+ realistic experiments*

RESULTS – sensitivity experiments

CONCLUSIONS

to initialise WRF, better results!

(this is skin temperature = SST)

Increased SST \rightarrow Stronger winds