

Build, measure, understand: Pupils contributing to meteorological measurement campaigns

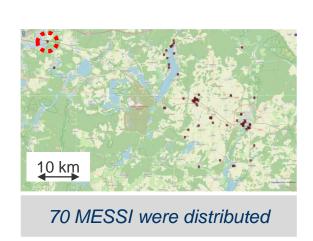
Martin Göber ^{1,2} Henning Rust^{1,3}, Thomas Kox^{1,4}, Bianca Wentzel^{1,3}, Christopher Böttcher^{1,3}, Jonas Lehmke^{1,3}, Andreas Trojand^{1,3}, Nadine Fleischhut^{1,5}, Katja Schulze^{1,6} and Vincent Sobottke^{1,3}

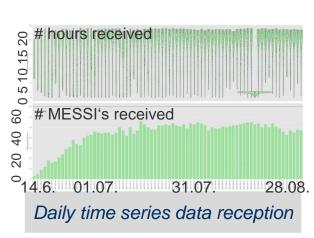
¹ Hans-Ertel-Centre Weather Research, ² DWD, ³ Inst.f. Meteorology, FU Berlin, ⁴ LMU München, ⁵ MPI Human Development, ⁶ Disaster Res. Unit, FU Berlin

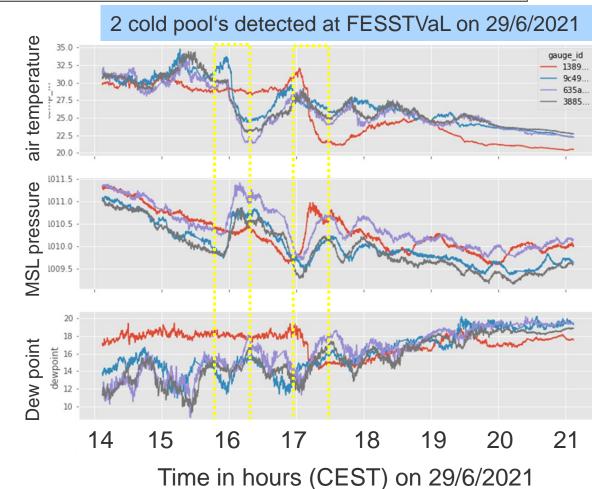
Background

- Field Experiment on Submesoscale
 Variability in Lindenberg (2021)
- Fostering weather & climate literacy among pupils by engagement in weather citizen science project in Bavaria (2020+21)

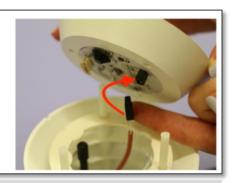
Research questions


- 1. Are low-cost Internet of Things sensors suitable to augment a professional network?
- Does participation improve weather and climate literacy?


Approach


- Participants get a low-cost, autonomous **weather station** (called MESSI) **to self-assemble** and deploy in their garden, browser app for visualisation
- Virtual (COVID....) assistance workshops and digital material on weather and forecasts, **pre-post participation survey** on weather literacy

Are low-cost IoT sensors suitable to augment a professional network?



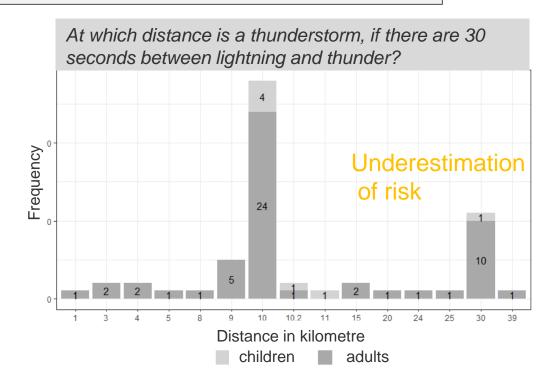
Does participation improve weather and climate literacy?

Als nächstes steckst du das Kabel des Temperatursensors in den Stecker auf der Platine.

Example from the construction manual

Online survey

- Knowledge, perception, behavioral questions
- About climate change, extreme weather events and risks
- Interest in science, technology, engineering, mathematics
- Following Fleischhut et al., 2020: Weather Literacy in Times of Climate Change. Wea. Climate Soc.



Left: time series Temperature, right: now, all variables

Does participation improve weather and climate literacy?

References:

- FESSTVaL campaign: https://fesstval.de/
- KARE-CS project: https://energiewende-oberland.de/hp14913/KARE-CS.htm
- WEXICOM project: https://www.geo.fu-berlin.de/met/wexicom/index.html
- Kox, T., Göber, M., Wentzel B., Freundl, E., Rust, H. (2021): <u>Fostering weather and climate literacy among pupils by engagement in a weather citizen science project</u>. *Proceedings of Austrian Citizen Science Conference 2020 PoS(ACSC2020), 393, 002*.
- Kox, T., Rust, H. W., Wentzel, B., Göber, M., Böttcher, C., Lehmke, J., Freundl, E.,
 Garschagen, M., (accepted, subject to minor revisions): Build and Measure: First experience
 with an innovative citizen science approach, with pupils using self-built micro weather stations
 to collect weather data and report event impacts. Australasian Journal of Disaster and
 Trauma Studies.
- Fleischhut, N., S.M. Herzog, and R. Hertwig (2020): Weather Literacy in Times of Climate Change. Wea. Climate Soc., 12, 435–452, https://doi.org/10.1175/WCAS-D-19-0043.1