

DOWNSCALING SEASONAL WEATHER FORECASTS FOR CROP YIELD FORECASTING OVER ZIMBABWE

SINCLAIR CHINYOKA AND GERT-JAN STEENEVELD

INTRODUCTION

LOCAL

CROP YIELD

Source:https://www.cpc.ncep.noaa.gov

Source: http://csc.sadc.int/en/

BACKGROUND INFORMATION

- Rainfed agriculture
 - 90% of smallholder farmers
- Erratic rainfall seasons
 - Severe droughts
 - Floods and tropical cyclones
- High poverty and food insecurity
 - 5.3 mil (population ~12.5 mil)

Newsday,2015: severe droughts in 2015-2016 season

Food aid from several NGOs

Damages from cyclone Idai, 2019

Research Objectives and Questions

- ➤ To assess the impact of downscaling Climate Forecast System version 2 (CFSv2) in terms of
 - ➤ Model skill
 - Impact on crop yield forecasting
- > Research questions
 - Does CFSv2 reproduce Zimbabwe rainfall season?
 - Does downscaled CFSv2 improve seasonal rainfall predictions?
 - Is there an added value in downscaling CFSv2 in maize and sorghum yield forecasting?
 - Which crop can be recommended per region?

Study area

Google maps

- Landlocked
- Southern tropical region
- Central watershed (1250-1750m)
- Main lakes :
 - Chivero
 - Kariba
- Two main rivers
 - Limpopo
 - Zambezi

CLIMATE OF ZIMBABWE

- Two distinct seasons:
 - Dry season (April-Sept)
 - Wet season (October-March)
- Intertropical convergence zone (ITCZ)
- Mean Annual rainfall
 - Wet areas : 3000mm
 - Dry areas: 300mm
- Mean Annual temperatures
 - Minimum: 15°C
 - Maximum: 25 °C

WAGENINGEN UNIVERSITY & RESEARCH

DATA

- Station rainfall data
 - 35 stations around Zimbabwe (Ordinary rain gauges)
- Climate Hazards Group InfraRed Precipitation with station data(CHIRPS)
 - For spatial analysis
 - Resolution (4km)
- ECMWF ReAnalysis (ERA5)
 - Weather data for WOFOST model
 - "Observed crop yield"
 - 31 km resolution
- NCEP Climate Forecast System Version 2 (CFSv2)
 - Used for retrospective reforecasts and operational forecasting
 - Resolution of 100km.
 - Produce forecasts at 9 months, 1 season, 45 days
 - Has 64 sigma-pressure levels

➤ Downscaling NCEP CFSv2:

- Weather research and Forecasting (WRF v4.1.2)
- Grid spacing: 21km(d01) and 7km (d02)
- 40 vertical levels up to 20hPa
- Time integration: 1st Sept -1st April, 6hrs BC

➤ Rainfall seasons were characterized in terms:

- Drought using Standardized Precipitation Index (SPI)
 - D(dry) (SPI<-1)
 - N (Neutral) (-1<SPI<1)
 - W (wet)(SPI>1)
- Tercile forecasts (T)
 - Below normal (BN): (T<75%)
 - Near Normal (NN) : 75 <T<125 %
 - Above normal (AN): T>125%

WRF domain settings

CROP FORECAST: WOFOST

de Wit et al., 2019

- CFSv2
- WRF
- ERA5 (observed yield)
- ISRIC (https://www.isric.org/)
 - Soil depth (200 cm)
 - Water holding capacity
- For four sites:

Phillips et al., 1998

RESULTS

(a) Mean modelled and observed seasonal rainfall for the period 2011-2019

SPATIOTEMPORAL RAINFALL DISTRIBUTION

- Complete season October-March (ONDJFM)
 - Poor spatial coverage of rainfall forecasts by CFSv2
 - CFSv2 is drier (underestimate) seasonal rainfall in Zimbabwe
 - WRF forecasts is drier but an improvement of CFSv2
 - WRF improved spatiotemporal distribution of rainfall forecasts
- WRF underestimated the orographic induced precipitation eastern side of Zimbabwe
 - Can be due to the current grid spacing (7km)
- Two main rainfall bearing systems
 - OND: Tropical temperate troughs (cloud bands)
 - JFM: Intertropical convergence zone (ITCZ)
 - CFSv2 fails to reproduce the ITCZ
 - WRF improved the representation of ITCZ
- Overall WRF performed reasonably considering
 - Tropical cyclone Dineo (2016-2017)
 - Tropical cyclone Idai (2018-2019)

STATISTICAL ANALYSIS OF SEASONAL RAINFALL

MEAN BIAS ERROR (MBE)

- Both WRF and CFSv2 underestimated OND season for the large of the country
- Overestimation of JFM seasonal forecasts by WRF for the large part of the country
- MBE improved from -1.5mm/day to 0.5mm/day for the large part of the country in OND
- Overall improvement from -2mm/day to 0.5mm/day for the large part of the country in ONDJFM season
- Improvement of rainfall forecast in OND by WRF is a welcome result since it determines the onset of rainfall season as well as farming season

TERCILE AND SPI DRIVEN RAINFALL CATEGORISATION

TERCILE										
ONDJFM	REGION 1			REGION 2			REGION 3			
SEASONS	OBS	WRF	CFS	OBS	WRF	CFS	OBS	WRF	CFS	
2011-2012	NN	NN	AN	NN	NN	BN	NN	BN	NN	
2012-2013	NN	NN	BN	NN	NN	NN	NN	NN	NN	
2013-2014	AN	NN	BN	AN	NN	BN	NN	NN	BN	
2014-2015	NN	BN	NN	NN	BN	BN	NN	NN	NN	
2015-2016	NN	NN	BN	BN	BN	BN	BN	BN	BN	
2016-2017	AN	AN	NN	AN	NN	NN	AN	NN	$\mathbf{A}\mathbf{N}$	
2017-2018	AN	NN	NN	NN	NN	NN	NN	NN	NN	
2018-2019	BN	BN	BN	BN	BN	BN	NN	BN	BN	
PC (%)		62.5	25		62.5	50		62.5	7 5	

(a) Tercile driven forecasts for region 1 (Beitbridge), region 2 (Gweru and Masvingo) and region 3 (Karoi)

TERCILE ONDJFM

- CFSv2 bias towards below normal rainfall (BN)
 - As confirmed by MBE results
- WRF improved CFSv2 in region 1 and 2
 - Accuracy above 50 % in all regions indicating improved spatial coverage

SPI categorization										
ONDJFM	REGION 1				REGION	N 2	REGION 3			
SEASONS	OBS	WRF	CFSv2	OBS	WRF	CFSv2	OBS	WRF	CFSv2	
2011-2012	N	N	N	N	N	D	N	D	D	
2012-2013	N	N	D	N	N	N	N	N	N	
2013-2014	N	N	D	N	N	D	N	N	D	
2014-2015	N	D	N	N	N	D	N	N	N	
2015-2016	N	N	D	D	D	D	D	D	D	
2016-2017	W	N	$ \mathbf{w} $	N	N	N	N	N	N	
2017-2018	N	N	N	N	N	\mathbf{N}	N	N	N	
2018-2019	D	D	D	D	D	D	N	D	D	
PC (%)		75	62.5		100	62.5		75	62.5	

SPI DRIVEN

- CFSv2 -62.5%
 - Drier than WRF
- WRF 75-100%
- WRF outperforms CFSv2 in all regions

(b) SPI driven forecasts for region 1 (Beitbridge), region 2 (Gweru and Masvingo) and region 3 (Karoi)

WEATHER PARAMETERS FOR WOrld FOod STudies (WOFOST)

(a) Karoi site scatter plots (shading is the 90% confidence interval)

MAIZE PRODUCING SITE (KAROI)

- Max temperature -WRF
- Min temperature CFSv2
- Irradiation- WRF

BEITBRIDGE

- Max temp -WRF
- Min temp WRF
- Irradiation- WRF
- Poor cropping site

(b) Beitbridge site scatter plots (shading is the 90% confidence interval)

MAIZE YIELD SIMULATION

(a) Karoi site maize yield

MAIZE PRODUCING SITE (KAROI)

- WRF-forced simulations outperformed CFSv2-forced
- Improved prediction of rainfall onset dates by WRF
- Same seasonal yield but poor onset (e.g 2014-2015)
 - The model is punished

BEITBRIDGE

- Low maize yield
- High crop failure
- Not cropping site

(b) Beitbridge site maize yield

ACCURACY OF CROP FORECASTS

(a) Maize yield accumulated absolute error for all sites

MAIZE YIELD FORECASTS

- WRF-forced crop forecasts outperforms CFSv2 (6/8)
- Poor onset greatly affected model performance particularly CFSv2
- Poor maize yield forecasts at Beitbridge site
- Karoi best maize yield site

(b) Sorghum yield accumulated absolute error for all sites

SORGHUM YIELD FORECASTS

- Sorghum yield forecasts have low accumulated error compared maize yield
- Maize and sorghum responds different to rainfall distributions.

CONCLUSIONS

- Does CFSv2 reproduce Zimbabwe rainfall season?
 - Good spatial rainfall distribution though under forecasting rainfall amounts
- Does downscaled CFSv2 improve rainfall predictions?
 - Improvement in terms of rainfall amounts
 - Very good performance in predicting drought seasons
 - A reduction of MBE from -2 mm/day to about 0.5 mm/day by WRF in ONDJFM season
- Does downscaled CFSv2 improve maize yield forecasting?
 - Improvement in prediction onset of rainfall season hence higher accuracy in crop forecasting by WRF
 - CFSv2 was punished for failure to capture onset of farming season as well as low maize yield
- Does downscaled CFSv2 improve sorghum yield forecasting?
 - WRF-forced sorghum forecasts outperforms CFSv2-forced forecasts
 - Sorghum yield forecasts are much better than maize yield forecasts at all sites

References

- A. de Wit, H. Boogaard, D. Fumagalli, S. Janssen, R. Knapen, D. van Kraalingen, I. Supit, R. van der Wijngaart, K. van Diepen, 25 years of the wofost cropping systems model, Agricultural Systems 168 (2019) 154 -167. doi:https://doi.org/10.1016/j.agsy.2018.06.018
- J. G. Phillips, M. A. Cane, C. Rosenzweig, ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe, Agricultural and Forest Meteorology 90 (1998) 39{50. doi:10.1016/S0168-1923(97)00095-6.
- T. Mushore, Uptake Of Seasonal Rainfall Forecasts In Zimbabwe., IOSR Journal Of Environmental Science, Toxicology And Food Technology 5(2013) 31{37. doi:10.9790/2402-0513137.
- S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H. ya Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. P. Mendez, H. van den Dool, Q. Zhang, W. Wang, M. Chen, E. Becker, The ncep climate forecast system version 2, Journal of Climate 27 (2014) 2185 { 2208. doi:10.1175/JCLI-D-12-00823.1.
- W. Skamarock, J. Klemp, J. Dudhia, D. Gill, L. Zhiquan, J. Berner, W. Wang, J. Powers, M. G. Duda, D. M. Barker, X.-Y. Huang, A Description of the Advanced Research WRF Model Version 4 NCAR Technical Note, National Center for Atmospheric Research (2019) 145. doi:10.5065/1dfh-6p97