

Diverse response of surface ozone to COVID-19 lockdown in China

<u>Yiming Liu</u>, Tao Wang, Trissevgeni Stavrakou, Nellie Elguindi, Thierno Doumbia, Claire Granier, Idir Bouarar, Benjamin Gaubert, Guy P. Brasseur

- 1. School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
- 2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
- 3. Royal Belgian Institute for Space Aeronomy, Brussels, Belgium;
- 4. Laboratoire d'Aérologie, Toulouse, France;
- 5. NOAA Chemical Sciences Laboratory and CIRES/University of Colorado, Boulder, CO, USA;
- 6. Environmental Modeling Group, Max Planck Institute for Meteorology, Hamburg, Germany;
- 7. Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA;

September 2021

DObserved changes in O_3 during the COVID-19 lockdown

\square Modeling the causes of O₃ changes (Meteorology and Emission)

Primary pollutants has decreased except O₃ in norther China after lockdown

Shi et al., 2020 @ GRL

Study regions

Three typical regions:

- North China (NC) North China Plain, 184 sites
- Central China (CC) Hubei province, 108 sites
- South China (SC)
 Pearl River Delta, 77 sites

Two period:

- Pre-COVID-19 lockdown (pre-CLD) period: Jan 2-22, 2020
- COVID-19 lockdown (CLD) period: Jan23-Feb 12, 2020

O₃ decreased in SC but increase in most other regions

Possible reasons for the changes in O₃

- Improper emission reductions of O_3 precursors (NOx, VOC, CO);
- Decrease in aerosol effects through altering photolysis rates and heterogeneous reactions.
- Changes in meteorological conditions (temperature, wind field humidity, precipitation, etc.)

Reproduce O₃ changes using the WRF-CMAQ model

Model setting

- Model: WRF-CMAQ
- Resolution: 36km×36km
- Period: 2 Jan-12 Feb 2020
- Mechanism: SAPRC07TIC, AERO6i, heterogeneous uptake of NO₂, N₂O₅, NO₃, HO₂, OH, O₃, H₂O₂ and updated HONO sources
- Anthropogenic emissions: MEIC
- Biogenic emission: MEGAN v2.1

Estimated changes in anthropogenic emission during lockdown

- -70% in transportation emission
- -40% in industry emission
- -30% in power emission
- +10% in residential emission

Literature: Huang et al., 2020 @ NSR Wang et al., 2020 @ RCR Doumbia et al., 2021 @ ESSD

Meteorology and emission exert diverse effects in different regions

O₃ changes mainly depend on reductions of NOx and VOCs

- The changes of NOx and VOCs emissions have the highest contributions to O3 changes.
- In NOx-saturated NC, the reduction in NOx >> VOC contributed to the O3 increase;
- For SC, the comparably large decreases in NOx and VOC contributed to the O3 decrease.

Residential sources contribute more VOC in northern China

Anthropogenic pollutant emissions in winter

 Attention should be paid to control the residential emission in winter.

Data from MEIC (http://meicmodel.org)

Conclusion

Doservational evidence: We find that O_3 decreased in the subtropical south, in contrast to increases in most other regions.

DMeteorology: Meteorological changes played an important role in short-term O_3 variability. It contributed to the O_3 increase in NC & CC but the O_3 decrease in SC.

DEmissions: The larger reduction in NO_x than VOCs induced O₃ increases in the NO_x-saturated north, whereas the comparably large decreases in both precursors resulted in O₃ declines in the south.

□Implications: Control in residential emission is strongly suggested in winter to reduce the atmospheric oxidation capacity in North China.

Thank you! IUSUK AONI

Contact: liuym88@mail.sysu.edu.cn (Yiming Liu)

For more information:

Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, I., Gaubert, B., and Brasseur, G. P.: Diverse response of surface ozone to COVID-19 lockdown in China, Sci. Total Environ., 789, 147739, https://doi.org/10.1016/j.scitotenv.2021.147739, 2021.