

# What are drivers of the tropospheric ozone change during spring 2020?

#### Session: Interactions between air pollution, meteorology and the spread of COVID-19

B. Gaubert<sup>1</sup>, I. Bouarar<sup>2</sup>, G. P. Brasseur<sup>1,2,9</sup>, T. Doumbia<sup>3</sup>, S. Darras<sup>4</sup>, A. Deroubaix<sup>2</sup>, C. Granier<sup>3,5</sup>, J. Hannigan<sup>1</sup>, D. Jo<sup>1</sup>, F. Lacey<sup>1</sup>, Y. Liu<sup>6</sup>, J.-F. Müller<sup>7</sup>, I. Ortega<sup>1</sup>, X. Shi<sup>2</sup>, T. Stavrakou<sup>7</sup>, W. Steinbrecht<sup>8</sup>, S. Tilmes<sup>1</sup>, T. Wang<sup>9</sup>.

<sup>1</sup>National Center for Atmospheric Research.<sup>2</sup>Environmental Modeling Group, Max Planck Institute for Meteorology. <sup>3</sup>Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS. <sup>4</sup>Observatoire, Midi-Pyrénées. <sup>5</sup>NOAA Chemical Sciences Laboratory/CIRES, University of Colorado. <sup>6</sup>School of Atmospheric Science, Sun Yat-sen University. <sup>7</sup>Royal Belgian Institute for Space Aeronomy. <sup>8</sup>Deutscher Wetterdienst. <sup>9</sup>Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University.





## Global simulations of the 2020 COVID-19 lockdowns



- ✓ Tropospheric and stratospheric (ozone) chemistry
- Aerosol scheme: MAM4 VBS (SOA)
- Daily 2020 fire emissions (QFED 2.5)
- Nudged to 3-hourly 2020 meteorology from MERRA-2
- Baseline emissions CAMS-GLOB-ANT-v4.2-R1.1 (includes MEIC over China)



| Simulation name | Dynamic / meteorology | Emission effect                  | Notes                          |
|-----------------|-----------------------|----------------------------------|--------------------------------|
| Control         | 2020 meteorology      | business-as-usual 2020 emissions | reference                      |
| COVID-AII       | 2020 meteorology      | Lockdown adjusted emissions      | emission impacts               |
| Climato         | 2015-2020 meteorology | repeated 2020, same as control   | dynamic impacts                |
| Climo           | 2001-2020 meteorology | 2001-2020 emissions              | comparison with ozone sondes   |
| COVID-Surface   | 2020 meteorology      | Surf. only lockdown              | Surface emissions on Trop. O3  |
| COVID-Airc      | 2020 meteorology      | Aircraft only lockdown           | Aircraft emissions on Trop. O3 |



#### Thursday 9 September 2021

## **Emissions / Lockdown impacts**

### CONFORM

(COvid adjustmeNt Factors fOR eMissions)

- Gridded AFs from January to August 2020 as NetCDF files
- Daily and gridded 0.1°x0.1°
- Slobal coverage

Gaubert et al., JGR, 2021

For each species: 7 Sectors



COVID-ALL - Cntrl (%) NOx 202004



Lockdown induced changes (%) Ozone during April 2020

## Lockdown impact: emission induced chemical perturbation



# Impact of meteorology

Record low ozone, lowest ozone since 1979, in the stratosphere seen by MLS observations (Manney et al., 2020), ozone sondes measurements (Wohltmann et al., 2020) and chemical reanalyses (CAMS, Inness et al., 2020).



Deep intrusions of stratospheric ozone frequently reach the middle and even lower troposphere at midlatitudes during winter and spring.



# **Concluding remarks**

Zonally averaged ozone in the free troposphere during Northern Hemisphere spring and summer of 2020 is found 5 to 15% lower than 19-year climatological values, in good agreement with observations.





Steinbrecht et al., 2021; Bouarar et al., GRL, 2021

- 1. About one third of this anomaly is attributed to the reduction scenario of air traffic during the pandemic,
- 2. another third to the reduction scenario of surface emissions,
- 3. the remainder to 2020 meteorological conditions, including the exceptional springtime Arctic stratospheric ozone depletion.