Investigation of Sea Breeze and Foehn in the Dead Sea Valley with Remote Sensing **Observations and WRF Model Simulations**

Pavel Kunin¹, Pinhas Alpert² and Dorita Rostkier-Edelstein^{3,4}

¹LSRI, Ness-Zyiona, Israel, ²Tel Aviv University, Tel-Aviv, Israel, ³IIBR, ⁴The Hebrew University, Israel

Kunin, P., Alpert, P., Rostkier-Edelstein, D. Investigation of sea-breeze/foehn in the Dead Sea valley employing high resolution WRF and observations. Atmos. Res. 2019, 229, 240–254

Introduction

- -The Dead Sea (DS) valley is unique in the world because it is the lowest place on land (430 below MSL) and a very saline water body (DS) in its center
- During the summer the DS weather conditions are dominated by a complex combination of synoptic, mesoscale, and local circulation patterns
- The summer Israel climate is strongly affected by the Mediterranean Sea breeze (MSB)
- During the day the MSB flows up the Judean Mountains and drops into the DS valley in the early evening hours
- It was found that during most of the days (85%) the surface SH decreases while temperature increases (74%) at the MSB arrival time

Methodology

- Analysis of two events characterized by very different temperature and humidity behavior at the surface at the time of MSB arrival.
 - Analysis of the synoptic, mesoscale and local scale atmospheric evolution in the DS valley during these events.

Tools

and ground-based **High-Resolution** (HR) in-situ remote sensing observations from the Virtual Institute DEad SEa Research Venue

The objectives here are:

- Investigation of MSB/foehn structure as it penetrates the DS valley
- Elucidation of cases with different outcomes at the DS valley surface with MSB/foehn arrival

(DESERVE) project during August 2014: Wind lidars (WindCube and WindTracer), radiosondes and radiometer

- Local surface-observations network ("Energy Balance Stations", EBS)
- HR WRF mesoscale model simulations (1.1-km grid size).

Choice of events: surface observations

- On 8 August during MSB arrival
- change in wind direction from eastern to western direction
- speed intensification
- very steep decrease in specific humidity
- increase in temperature

On 16 August during MSB arrival

- Similar change in wind direction and speed intensification like on 8 August
- Increase in specific humidity
- decrease in temperature
- Before MSB arrival more humidity on 16 August than on 8 August

The MSB arrived later on 8 August

Synoptically, 8 August was dominated by a High, while 16 August was dominated by a Persian Trough

Sensitivity simulations for optimal modeling

						Spin-up time	Spin-up time
.			Number of	IC/BC of	IC/BC of	of coarse	of finest
Simulation		221	vertical	coarse	finest	domains	domain
number	Landuse	PBL	levels	domain	domain	(nours)	(nours)
1	USGS	MYJ	32	GFS	GFS	39	39
	MODIS						
2	30s	MYJ	32	GFS	GFS	39	39
	MODIS						
3	15s	MYJ	32	GFS	GFS	39	39
	MODIS						
4	15s	MYJ	40	GFS	GFS	39	39
	MODIS						
5	15s	MYJ	40	GFS	GFS	39	15
	MODIS						
6	15s	MYJ	40	GFS	GFS	39	27
	MODIS						
7	15s	YSU	40	GFS	GFS	39	15
	MODIS						
8	15s	MYJ	40	GFS	GFS	15	15
	MODIS				Parent		
9	15s	MYJ	40	GFS	domain	39	15
	MODIS						
10	15s	MYJ	40	ECMWF	ECMWF	39	15
	MODIS			ECMWF/	ECMWF/		
11	15s	MYJ	40	GFS	GFS	39	15

- Tests for parameters expected to affect MSB, DS breeze and mountain-valley circulations
- 11 simulations
- Features verifications:
- time of MSB arrival
 - changes in surface wind, specific humidity and temperature
- changes in vertically integrated water vapor
- horizontal wind vertical profiles
- downward vertical velocity
- #5 was found as the best

Domain and Experimental Setup

- 4 nested domains with 30, 10, 3.3 and 1.1 km grid spacing
- 40 vertical levels
- Meteorological and soil initial conditions from GFS global model
- The three coarser domains were initialized on the 15 August and 7 August, 00 UTC, for the 16 and 8 August events
- The finest domain was initialized 24 hours later to diminish error growth from the lateral boundaries

Results: Wind profiles

Solid line - upward vertical velocity Dashed line - downward vertical velocity Height – meters above ground

UTC

UTC

Summary

- Our study shows that foehn develops in the lee side of the Judean Mountains and Dead Sea Valley in the afternoon hours when the Mediterranean Sea breeze reaches the area
- The simulations and observations show similar dynamic behavior at the time of MSB penetration
- In the synoptic scale, the depth of the seasonal pressure trough at sea level and the height of inversion layers play a significant role in determining the breeze and foehn characteristics
- In the mesoscale, the intensity of the Dead Sea breeze and the humidity brought by it determines the outcomes at the time of Mediterranean Sea breeze penetration and foehn development
- **Dynamically**, the foehn is associated with a hydraulic jump
- The forecasting feasibility of foehn and the sudden changes in the Dead Sea valley 24 hours in advance using WRF is suggested following the present study
- These forecasts can be most valuable for the region affected by pollution penetration from the metropolitan coastal zone
- The German Helmholtz Association is gratefully acknowledged for (partly) funding this project within the Virtual Institute DESERVE (Dead Sea Research Venue) under contract number VH-VI-527. Special thanks to our German partners Jutta Metzger and Ulli Corsmeier for much help with the data and useful comments