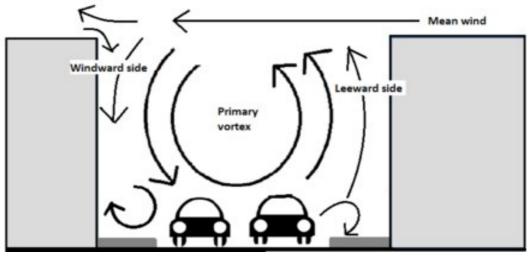


SCREEN CAPTURE WELCOME

Introduction and validation of a simplistic method to represent vehicle-induced turbulence in highresolution large-eddy simulations

Giovanna Motisi¹, Björn Maronga^{1,2}

¹ Institute of Meteorology and Climatology, Leibniz University Hannover, Germany ² Geophysical Institute, University of Bergen, Norway

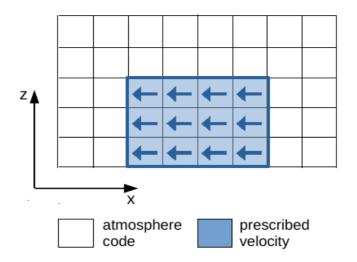


SCREEN CAPTURE WELCOME

Motivation and Aim

Skimming flow regime with mean wind direction perpendicular to street canyon (after Oke, 1988) (https://en.wikipedia.org/wiki/Street_canyon)

- Flow and pollutant dispersion within street canyons influenced by many processes like aspect ratio (AR), roof shape and thermodynamics
- Additional critical factor: vehicle-induced turbulence (VIT)
- Research so far mainly based on wind tunnel experiments and CFD studies using RANS (Reynolds-Averaged-Navier-Stokes) models
- Our aim: account for VIT in Large-Eddy Simulation (LES) Model PALM¹

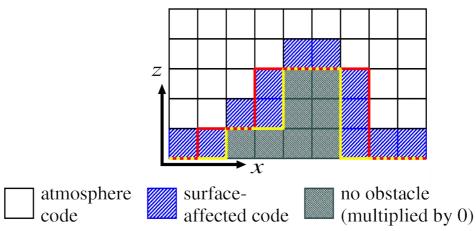


SCREEN CAPTURE WELCOME

Technical realization

Air block method (newly developed):

- Fixed velocity prescribed to objects (vehicles) grid volumes that equals the driving speed
- Assumption: frictional drag << form drag \rightarrow neglectable
- Due to advection scheme: additional numerical viscious drag

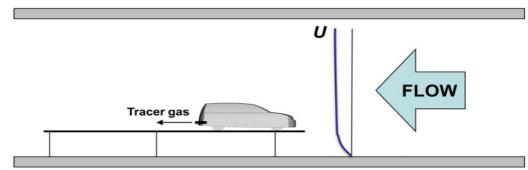


SCREEN CAPTURE WELCOME

Technical realization

Solid block method (already implemented):

Sketch of the topography implementation using the mask method (here for w) (https://palm.muk.uni-hannover.de/trac/wiki/doc/tec/bc#Topography)


- Model domain is separated into three subdomains
- Frictional drag is taken into account by surfaces
- Advection scheme is successively degraded at respective grid volumes adjacent to obstacles

SCREEN CAPTURE WELCOME

Validation study

• Experimental setup according to wind tunnel experiments of Carpentieri et al. (2012)₂

Schematic representation of experimental setup in wind tunnel (Carpentieri, Matteo et al. "Wind tunnel measurements for dispersion modelling of vehicle wakes." (2012))

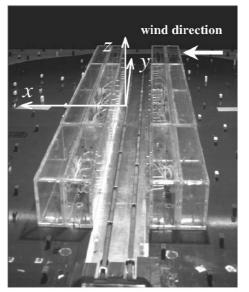
- To remove unrealistic effects of a boundary layer \rightarrow Model (2004 Vauxhall AstraVan) was placed near the edge of a raised floor
- Exposed to free wind stream of 2.5 m/s (1:5 scale)
- Tracer gas released from tailpipe with 0.33 m/s
- Dimensionless coordinates: X=x/h, Y=y/h, Z=z/h
- Velocity parameters normalized by reference velocity u_{ref}

SCREEN CAPTURE WELCOME

Introduction and validation of a simplistic method to represent vehicle-induced turbulence in highresolution large-eddy simulations

Validation study

- Simulation setup:
 - Turbulence-resolving LES model PALM¹ used
 - Sensitivity study: necessary grid spacing of 0.05 m (according to findings of Letzel et al. (2008)₃)
 - No raised floor but small roughness length of 1*10⁻⁴ m
 - Scaled to reality (1:1) \rightarrow reference speed of 12.5 ms⁻¹
 - No coriolis force
 - Neutral stratification
 - Averaging time based on requirement SEM < $0.006 \text{ ms}^{-1} = 600 \text{ s}^{-1}$
 - Use of same geometry (2004 Vauxhall AstraVan) as in wind tunnel experiments

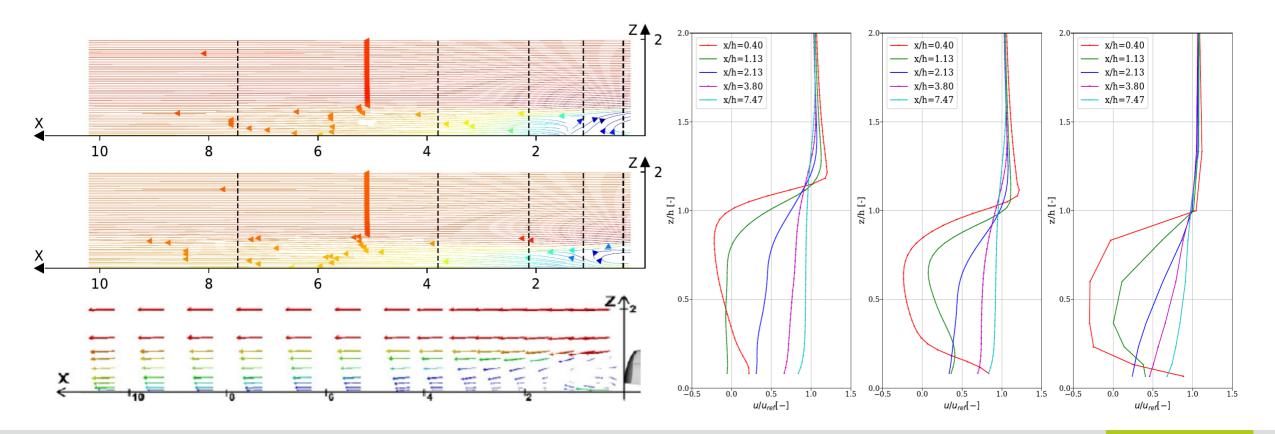


SCREEN CAPTURE WELCOME

Validation study

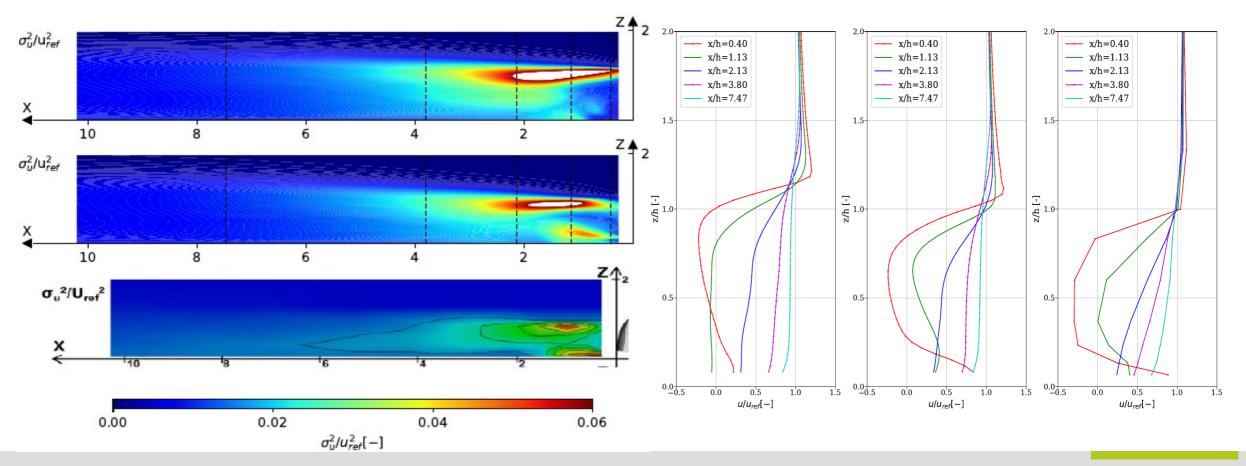
• Upcoming validation study according to wind tunnel experiments of Kastner-Klein et al. $(2001)_4$

- Street canyon with aspect ratio (AR) of 1, wind flow perpendicular to canyon
- Plates mounted on moving belts were used to account for VIT
- Reproduction of one-way and two-way traffic



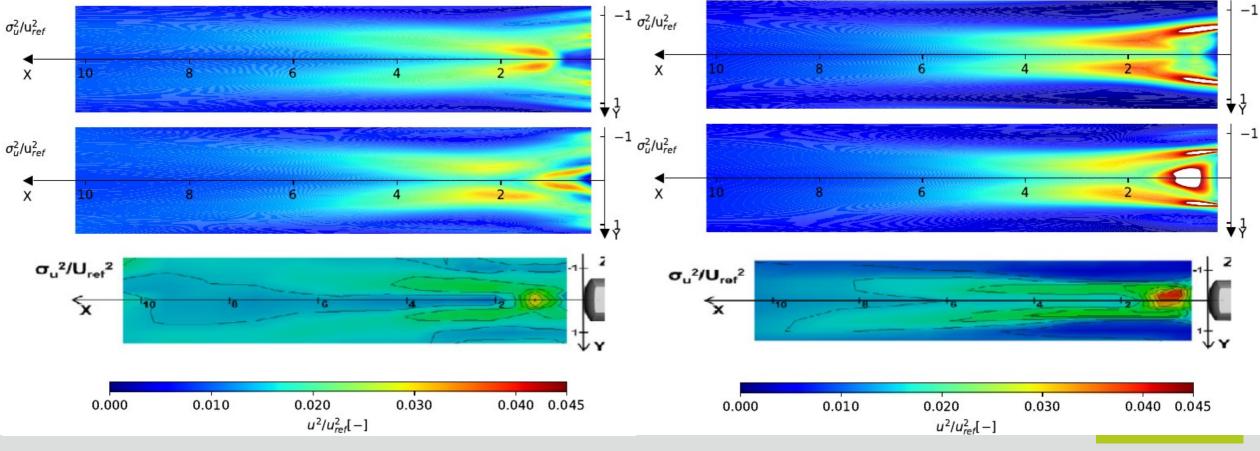
SCREEN CAPTURE WELCOME

Left: $u/u_{ref} - w/u_{ref}$ vector plot at Y=0 (upper = air block method, middle = solid block method, lower = experimental data) Right: Vertical profiles of longitudinal dimensionless mean speed (u/u_{ref}) (left = air block method, middle = solid block method, right = experimental data)



SCREEN CAPTURE WELCOME

Left: σ_u^2 / u_{ref}^2 velocity variance contour plot at Y=0 (upper = air block method, middle = solid block method, lower = experimental data) Right: Vertical profiles of longitudinal dimensionless mean speed (u/u_{ref}) (left = air block method, middle = solid block method, right = experimental data)



SCREEN CAPTURE WELCOME

Left: σ_u^2/u_{ref}^2 velocity variance contour plot at Z=0.07 (upper = air block method, middle = solid block method, lower = experimental data) Right: σ_u^2/u_{ref}^2 velocity variance contour plot at Z=0.23 (upper = air block method, middle = solid block method, lower = experimental data)

Giovanna Motisi, Björn Maronga

SCREEN CAPTURE WELCOME

Thank you for your attention!