Forecasting monthly numbers of hot days in Europe with a convolutional neural network EMS2021, OSA1.8: Machine Learning and Computer Vision in Weather and Climate 07 Sep 2021

Matti Kämäräinen, Kirsti Jylhä, Natalia Korhonen, and Otto Hyvärinen

07 Sep 2021

Definitions	Objective	Data	Methods
Hot days (HD): days exceeding the local 90th percentile of T2M	Deterministic statistical prediction of the future NHD30 in	Predictors: various ERA5 parameters 1950–2019 over	A new machine vision model based on convolutional neural
in summer months (JJA)	Europe as accurately as possible without using	Northern Hemisphere + Tropics	networks
Number of HD in the next 30	dynamical models at all	Target: ERA5 NHD30 over	Optimization of the input
days (NHD30) = target variable		Europe during extended summer	parameter combination from a
	NONESS	(MJJAS)	large set of potential parameters
	WE SEE EA		"Time series fitting" approach
	SW SD SE		to mimic the real life forecasting:
	3-13-12- 12		for each year, a model fitted to
	K		data of the previous years

Forecasting monthly numbers of hot days in Europe with a convolutional neural network EMS2021, OSA1.8: Machine Learning and Computer Vision in Weather and Climate Matti Kämäräinen, Kirsti Jylhä, Natalia Korhonen, and Otto Hyvärinen

Results and Discussion

- The model learns and handles successfully the strong seasonality of the data
- Quite often the model can predict the **spatial pattern** of **NHD30**, but struggles with exact numbers
- A steady and steep increase in validation correlation as more data is used in fitting
- All regions have **positive bias** during the last years \rightarrow **RMSE** begins to grow
- Most likely these results are better than the NHD30 forecasts from dynamical models but it has not been investigated thoroughly yet

