
A validator for SASF (Spacecraft Activity Sequence File) NASA
language interface in DAWN VIR experiment

S. Fonte (1), F. Carraro (1), A. Coradini (1), M. C. De Sanctis (2), E. Ammannito (1).

(1) INAF-IFSI, Rome, Italy, (2) INAF-IASF, Rome, Italy

Abstract

Dawn is a NASA mission for Solar System exploration; there
are there instruments involved, one is a Visible and Infrared
spectrometer (an Italian industrial development). The
management of each instruments comes using the SASF
(Spacecraft Activity Sequence File) interface: an ASCII timing
script containing the instruments commands and setting
parameter. In order to avoid problems during the management
of SASF syntax, a syntax analyzer for this language has been
developed: VIRV (VIR Validator). The VIRV purpose is to
help in checking the SASF syntax and to produce a simulation
of the instrument operative sequence that will be executed in the
VIR flight machine.

The development guidelines of VIRV are the idea of usual
compiler, as C/C++ or fortran compilers, where a language (as
close as possible to human language) is translated into machine
language (where each byte can be understood by the microchip
which will execute it. It is the so called machine byte code)
during the compilation/linking phase.

VIRV was developed to behave as a C/C++ compiler: there’s
no byte code but a table with a simulation of VIR instrument
operation during a SASF procedure.

VIRV is composed by two macro systems: the Lexer and the
Parser. The first one performs an analysis of the input ASCII
file and tokenize this input in tokens (an ASCII character
sequence with a SASF meaning). The second one (Parser)
catches these tokens and produces a language structure
analyzer. At the end of this process, if this analysis produces a
correct result, a transformation of the sequence into a table with
relevant quantities for the VIR simulation is performed.

The principal token type are Time, Identifier and Text token:

1. Time identifies the time formats in the sequence,

2. Identifier refers to a SASF directive and VIR
commands;

3. Text tokenizes all string comments between quotes.

The Tokens are organized in a language grammar that respect
SASF interface. The combination of these structures product the
sequence.

The VIRV Parser is designed to check the presence of a
violation of the VIR flight rules within the analyzed sequence.
It makes a test of the instruments constraints on the data volume
and checks if VIR command parameters values are contained
within their boundaries.

To perform a VIR simulation, an apposite data structure has
been created within the Parser: a SASF Process Unit, the
Memories Unit and the Status parameters.

Figure 2: SASF structure.

Figure 1: VIRV Lexer and Parser diagram.

Figure 3: Parser data structure.

EPSC Abstracts
Vol. 6, EPSC-DPS2011-1040-1, 2011
EPSC-DPS Joint Meeting 2011
c© Author(s) 2011

The goal of these data structures is to perform a simulation of
the VIR instrument flight status diagram. The validation process
can be divided into two steps: at the very beginning of the
sequence development the user checks if the syntax is correct.
Then the user removes all typo issues and/or present violation
of flight rules. The second step, at the end of the previous
validation, the user checks the diagram produced to avoid
undesirable behavior on the sequence.

The previous picture represent a result of a simulation on test
sequence which represents a typical acquisition during the VIR
operations. This tools is constantly used during the usual VIR
flight sequences production and helps the VIR Team into
generating the SASF for Vesta acquisitions.

References

[1] M.C. De Sanctis, et al., The VIR Spectrometer, Space Sci Rev DOI
10.1007/s11214-010-9668-5, 2010.
[2] A. Coradini, et al., Virtis: An Imaging Spectrometer for the Rosetta
Mission, Space Science Reviews, Volume 128, Issue 1-4, pp. 529-559,
2007.
[3] John R. Levine, Flex & Bison, O'Reilly, ISBN: 978-0-596-15597-1

Figure 4: Status diagram of a test sequence simulation.

