
PSTD-based Optimal Control Approach to the CONSERT
Inverse Scattering Problem

C. Statz (1), G. Arnold (1), S. Hegler (1), D. Plettemeier (1), A. Herique (2) and W. Kofman (2)
(1) Communications Laboratory, Dresden University of Technology, Dresden, Germany,
(2) Laboratoire de Planétologie de Grenoble, Grenoble, France
(christoph.statz@mailbox.tu-dresden.de)

1. Introduction
The scope of CoNSERT, short for Comet Nucleus
Sounding Experiment by Radio Transmission [1], is
to perform a sounding of the comet 67P/C-G’s core.
This will be achieved by launching a lander, called Phi-
lae, onto the comet’s surface. It will act as a receiver for
the sounding signal transmitted by the Rosetta orbiter,
and retransmit the received and processed signal. With
these data, a three dimensional model of the comet’s
core (i.e., the material distribution with regard to the
dielectric permittivity ε) is to be reconstructed.

2. Optimal Control Approach
An inverse problem can be formulated as optimization
problem using an optimal control approach where the
target functional j(p) over the spatial domain Ω and
time T can be expressed as:

j(p) =
1
2

T∫
0

∫
Ω

(u(p)− uobs(pu))2 dΩ dt (1)

u(p) is a state, p the control parameter, and uobs

the observed state. We are trying to reconstruct the
unknown parameter pu such that p = pu if j(p) =
0. The constraining system of PDEs as well as the
Lagrangian are derived in [2] resulting in the gradient
necessary for the optimization:

∂j

∂p
=

T∫
0

∫
Ω

λ
∂D(p)
∂p

u(p) dΩ dt (2)

where D(p) denotes the differential operator and λ the
adjoint state which is obtained by the adjoint differen-
tial operator D∗(p).

The system of PDEs governing wave propagation in
electromagnetic fields is defined by Maxwell’s equa-
tions. With the permittivity ε as our target parameter
and M discrete orbital observation points this leads to

j(ε) =
α

2

M∑
m=1

T∫
0

∫
Ω

(βE − γEobs)2δm dΩ dt (3)

with the weights αr, βr and γr which can be used to
adapt the target functional to the measured data. By
applying the optimal control approach described in [3]
we get the adjoint gradient, defined as:

∂j

∂εr
=

T∫
0

∫
Ω

E∗ ∂E
∂t
dΩdt (4)

The weighted residual of Eobs and E serves as source
for the adjoint system in the observation points M . E∗

is the adjoint state obtained by applying the adjoint
Maxwell’s equations; the only difference to the non-
adjoint equations is the change of the sign in the spatial
derivatives. The PMLs necessary to truncate the com-
putational domain are treated in the same manner [4].
The time-integration to compute the state E and ad-
joint state E∗ is done in opposite direction. In case
of isotropic materials (εx = εy = εz), only one field
component is needed to compute the gradient. With
this approach we derive an adjoint method for any time
domain method to compute the direct as well as the ad-
joint fields. To ensure the correctness of gradients one
can also derive the discretized adjoints and operators.

3. Algorithm and Implementation
The forward solver is invoked for the computation of
the target functional and the gradient. We implemented
a Pseudo-Spectral Time-Domain (PSTD) method based
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on a D-H formulation. In an FFT-based PSTD only
two grid cells per wavelength are needed (according to
Nyquist–Shannon sampling theorem) to compute the
spatial derivatives. Due to numerical dispersion, an
FDTD would need at least twelve cells per wavelength
to achieve the same accuracy as a PSTD with an equal
Courant–Friedrichs–Lewy (CFL) number.

However, there are some drawbacks. The PSTD is
computationally more complex than the FDTD. Also,
the maximal CFL number for the PSTD needs to be
smaller than for the FDTD by at least a factor of 2/π [5]
Since spatial and temporal unsteadiness lead to Gibbs
phenomena and aliasing when computing the deriva-
tives, the media in which the fields are propagating
need to be smooth. Source definition is also an issue,
which has to be treated in a special way. The source
for the 1D and 2D case defined in [6] can easily be
extended to three dimensions – Gibbs phenomena can
be reduced significantly.

Despite these difficulties, a significant reduction in
memory consumption compared to the FDTD leads to
an increase of the computational domain from 8λ to
100λ on a single compute node, which outweighs all
aforementioned drawbacks.

The adjoint solver is a slightly modified version of
the forward solver in order to accomplish reverse time
migration. The order in which the subroutines forD, E
and H updates are called has to be the exact opposite
of those in the forward solver in order to obtain correct
gradients.

For the optimization step, we are using IpOpt [7],
which offers the possibility to consider different con-
straints in the optimization process. These are given by
theoretical comet models and assumptions regarding
the inner composition as well as data from other in-
struments aboard Rosetta. With these constraints some
local minima of the multimodal parameter space can
be avoided [8].

4. Conclusions
Due to the use of the PSTD in the inversion process,
we were able to increase the computational domain
from 8λ to 100λ on a single compute node, and also to
achieve an improved accuracy of the computation. With
these improvements we are able to conduct baseband
analyses of the whole comet or RF domain computa-
tions of parts of the comet (e.g., for the analysis of
grazing incidence phenomena).

The introduction of the source consisting of eight
Hertzian dipoles reduced the ripple (caused by Gibbs

phenomena) below the magnitude of residual propaga-
tion and reflection within the PML.

The proposed algorithm to compute the gradient, as
shown in Eq. 4, has proven to be fairly efficient.
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