

Near-Earth Asteroid – Meteorite Puzzle: Putting the pieces together

R. P. Binzel

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
(rpb@mit.edu)

Abstract

For decades the spectral measurements of asteroids seemed a misfit with the population of falling meteorites [1]. However the pieces are now falling into place thanks to increasingly diagnostic and abundant spectral measurements of near-Earth asteroids [e.g. 2, 3, 4], spacecraft ground truth [5,6], and insights into space weathering [7].

Presented here will be the findings and relationships based on new near-Earth asteroid spectral data for more than 200 objects, measured through the *The MIT-Hawaii-IRTF Joint Campaign for NEO Spectral Reconnaissance* [8,9]. These results, when combined with source region analysis [10, 11, 12] now fit reasonably well together. While certainly not “solved”, many of the longstanding difficulties of connecting the asteroid and meteorite populations now appear to be behind us. Interesting new questions involve the balance between apparently rapid space weathering [7] and the surface refresh rate for near-Earth asteroids caused by planetary encounters [13,14] and YORP spin-up [15]. Breaking through some of the previous barriers also allows new investigation of links to more rare classes of meteorites, such as the ureilites [16].

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 0907766 and the NASA Near-Earth Object Observation Program Grant No. NNX10AG27G. In particular I acknowledge my colleagues in the MIT-Hawaii-IRTF Joint Campaign.

References

- [1] Wetherill G. W. and Chapman C. R.: Asteroids and meteorites. In *Meteorites and the Early Solar System* (J. F. Kerridge and M. S. Matthews, eds.), pp. 35–67. Univ. of Arizona, Tucson.
- [2] Lazzaro, D., Angeli, C.A., Carvano, J.M., Mothe-Diniz, T., Duffard, R., Florczak, M.: S3OS2: the visible spectroscopic survey of 820 asteroids. *Icarus* 172, 179-220, 2004.
- [3] de León, J., Licandro, J., Serra-Ricart, M., et al. : Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey, *A&A*, 517, A23, 2010.
- [4] Dotto, E., Perna, D., De Luise, F., Bernardi, F., Barucci, M.A., Brucato, J.R., Rossi, A., Perozzi, E., Fornasier, S., Valsecchi, G.B.: Low Delta-V Near Earth Objects: A Survey Of Suitable Targets For Space Missions. *BAAS* 42, 1053, 2010.
- [5] Trombka JI, Squyres SW, Bruckner J, Boynton WV, Reedy RC, McCoy TJ, Gorenstein P, Evans LG, Arnold JR, Starr RD, Nittler LR, Murphy ME, Mikheeva I, McNutt RL, McClanahan TP, McCartney E, Goldsten JO, Gold RE, Floyd SR, Clark PE, Burbine TH, Bhangoo JS, Bailey SH, Petaev M.: The elemental composition of asteroid 433 Eros: Results of the NEAR-Shoemaker x-ray spectrometer. *Science* 289, 2101-2105, 2000.
- [6] Nakamura, T. et al.: Mineralogy and Major Element Abundance of the Dust Particles Recovered from MUSES-C Regio on the Asteroid Itokawa. *42nd Lunar Plan. Sci. Conf.*, Abstract 1766, 2011.
- [7] Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M., Birlan, M.: Solar Wind as the Origin of Rapid Reddening of Asteroid Surfaces. *Nature* 458, 993-995, 2009.
- [8] Binzel, R. P., Rivkin, A. S., Thomas, C. A., DeMeo, F. E., Tokunaga, A., Bus, S. J.: The MIT-Hawaii-IRTF Joint Campaign for NEO Spectral Reconnaissance. *LPSC XXXVI*, Abstract 36.1817, 2005.

[9] R. P. Binzel, R. P., DeMeo, F. E., Lockhart, M. Tokunaga, A. T. Thomas, C.A., Rivkin, A.S., Bus, S.J., Birlan, M., Vernazza, P., Burbine, T. H. Spectral Reconnaissance for 200 Near-Earth Object Mission Targets. 42nd Lunar Plan. Sci. Conf., Abstract 2226, 2011.

[10] Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H., Michel, P., Metcalfe, T.S.: Debiased orbital and absolute magnitude distributions of near-Earth objects. *Icarus* 156, 399–433, 2002.

[11] DeMeo, F. E. and Binzel, R. P.: Comets in the Near-Earth Asteroid Population. *Icarus* 194, 436-449, 2008.

[12] Vernazza, P., Binzel, R.P., Thomas, C.A., DeMeo, F.E., Bus, S. J., Rivkin, A.S., Tokunaga, A.: Compositional Differences Between Meteorites and Near-Earth Asteroids. *Nature* 454, 858-860, 2008.

[13] Nesvorný, D., Jedicke, R., Whiteley, R. J. & Ivezic, Z.: Evidence for asteroid space weathering from the Sloan Digital Sky Survey. *Icarus* 173, 132–152, 2005.

[14] Binzel, R.P., Morbidelli, A., Merouane, S., DeMeo, F.E., Birlan, M., Vernazza, P., Thomas, C.A., Rivkin, A.S., Bus, S.J., Tokunaga, A.T.: Earth encounters as the origin of fresh surfaces on near-Earth asteroids.” *Nature* 463, 331-334, 2010.

[15] Scheeres, D. J.: The dynamical evolution of uniformly rotating asteroids subject to YORP. *Icarus* 188, 430–450, 2007.

[16] Jenniskens, P., et al. Almahata Sitta (asteroid 2008 TC3) and the search for the ureilite parent body. *Meteoritics and Planetary Science* 45, 1590-1617, 2010.

