

Potential Biosignatures in Super-Earth Atmospheres – Photochemical Responses

J. L. Grenfell (1), **S. Gebauer** (1), **H. Rauer** (1,2), **R. Lehmann** (3), **P. von Paris** (2), **J. Cabrera** (2), and **M. Godolt** (1)

(1) Technische Universität Berlin (TUB) (lee.grenfell@dlr.de), Germany, (2) Inst. für Planetenforschung, DLR, Berlin, (3) Alfred-Wegener Institut für Polar- und Meeresforschung, Potsdam, Germany

Abstract

We present modeled photochemical responses of potential biomarker species for Earth-like planets orbiting in the Habitable Zone of M-dwarf stars. Results imply that photochemical effects vary quite strongly with the class of the star and to a lesser extent with the assumed gravity of the planet.

1. Introduction

Spectral characterisation of Super-Earth atmospheres for planets orbiting in the Habitable Zone (HZ) of M-stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of biomarkers (species associated with life). Our work assumes a planet with an earthlike biomass and planetary development. Following the approach of [1] we apply a coupled climate-photochemical column model, varying planetary gravity (from 1g to 3g) and the stellar spectral class (from M0 to M7).

2. Computational details

We employ a coupled radiative-convective-photochemical model updated from [2] and [3] as detailed in [1]. The SQuIRRL (Schwarzschild Quadrature InfraRed Radiation Line-by-line) code [4] is used for high resolution radiative transfer modeling in a spherical atmosphere (for an arbitrary observation geometry and instrumental field-of-view and spectral response function). In addition, this work uses the Pathway Analysis Program (PAP) developed by [5] and applied by [6] to the Earth's atmosphere, in order to quantify and identify chemical pathways in Super-Earth atmospheres.

3. Results

We calculate a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for scenarios modelling planets in the Habitable Zone (HZ) of (M5-M7)-class dwarf stars. This result was associated with the weaker UV-B output of such stars, hence slower planetary atmospheric photolysis of molecular oxygen, which slowed their Chapman ozone production.

4. Summary and Conclusions

Coupled, consistent climate-photochemistry calculations are potentially important when calculating spectral signals of potential biomarkers of Super-Earth atmospheres. Improved knowledge of the UV-emission spectra of the parent M-dwarf stars is desirable.

Acknowledgements

This work has been partly supported by the research alliance *Planetary Evolution and Life* of the Helmholtz association (HGF).

References

- [1] Rauer, H., Gebauer, S., v. Paris, P., Cabrera, J., Godolt, M., Grenfell, J. L., Belu, A., Selsis, F., and Hedelt, P., Biomarkers in Super-Earth Atmospheres. I. Spectral appearance of Superearths around M-stars, *A&A*, Vol. 529 (A8), doi: 10.1051/0004-6361/201014368, 2011.
- [2] Segura, A., Krelove, K., Kasting, J. F., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M., and Mlawer, E., Ozone concentrations and ultraviolet fluxes on earth-like planets around other stars, *Astrobiol.*, Vol. 3, pp. 689-708, 2003.
- [3] Grenfell, J. L., Stracke, B., von Paris, P., Patzer, B., Titz, R., Segura, A., and Rauer, H., The Response of Atmospheric Chemistry on Earthlike Planets around F, G,

and K stars to Small Variations in Orbital Distance, Plan. Spa. Sci. Special Issue on Habitable Zones, Plan. Spa. Sci., Vol. 55, 661-671, 2007.

[4] Schreier, F., and Schimpf, B., A new efficient line-by-line code for high resolution atmospheric radiation computations incl. derivatives. In Smith, W. L., and Timofeyev, Y., editors, IRS, 2000: Current problems in atmospheric radiation, 381-384. A. Deepak Publishing, 2001.

[5] Lehmann, R., An algorithm for the determination of all significant pathways in chemical reaction systems, J. Atmos. Chem., Vol. 47, 45-78, 2004.

[6] Grenfell, J. L., Lehmann, R., Mieth, P., and Langematz, U., Chemical reaction pathways affecting ozone in the stratosphere and mesosphere, J. Geophys. Res., Vol. 111, doi: 10.10292005D005713, 2006.

