

The elasto-viscous equilibrium tide in exoplanetary systems

F. Remus (1,2,3), S. Mathis (2), J.-P. Zahn. (1) and V. Lainey (3)

(1) Observatoire de Paris - LUTH, Meudon, France (2) CEA/DSM/IRFU/Service d'Astrophysique, Gif-sur-Yvette, France (3) Observatoire de Paris – IMCCE, Paris, France
(francoise.remus@obspm.fr / Fax: +33 (0) 1.69.08.65.77)

Abstract

Earth-like planets have viscoelastic mantles. Moreover, giant planets may have viscoelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on the rheology, as well as on its size. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets properties.

Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We first present the equations governing the problem, and show how to obtain the different Love numbers that describe its deformation. We discuss how the quality factor Q depends on the chosen viscoelastic model. Finally we show how the results may be implemented to describe the dynamical evolution of planetary systems.

Acknowledgements

This work was supported in part by the Programme National de Planétologie (CNRS/INSU), the EMERGENCE-UPMC project EME0911, and the CNRS *Physique théorique et ses interfaces* program.

References

- [1] Dermott, S. F.: Icarus, 37, 310, 1979,
- [2] Greff-Lefftz, M., Métivier, L., & Legros, H.: Celestial Mechanics and Dynamical Astronomy, 93, 113, 2005,
- [3] Henning, W. G., O'Connell, R. J., & Sasselov, D. D.: Astrophysical Journal, 707, 1000, 2009,
- [4] Mathis, S., & Le Poncin-Lafitte, C.: Astronomy & Astrophysics, 497, 889, 2009.