

Plasma variations in Saturn's inner magnetosphere from the main rings to Enceladus

M.K. Elrod¹, W. L., Tseng¹, R.E. Johnson¹

¹University of Virginia, Charlottesville, VA

Abstract

With the discovery of an oxygen atmosphere over Saturn's main rings by the Cassini spacecraft observation (Tokar et al., 2005; Johnson et al. 2006), as well a strong, but variable source from the plumes emanating from the southern polar region of the moon Enceladus (Porco et al., 2005; Smith et al., 2010) the physics of the inner magnetosphere from the main rings to inside the orbit of Enceladus has changed dramatically. This region contains O₂ produced by the ring atmosphere and water group ions from the plumes. During the Saturn Orbit Insertion (SOI), July 1, 2004, Cassini detected a significant density of O₂⁺ ions over the main rings and between the F & G rings suggestive of an oxygen atmosphere produced from photochemistry of the ice particles in Saturn's ring system (Johnson et al., 2006, Tseng et al., 2009, Tseng & Ip 2010). We have produced a simple photochemistry model combining the water products from Enceladus and the seasonal effects on the ring atmosphere. The purpose of this study is to examine ion densities and composition from several periapses passes from 2004 to 2010 for the region in order to separate contributions from the seasonal effect on the ring atmosphere from any contribution from water products coming from Enceladus. Due to the high background of this region, the number of orbits used in this study with good pointing into the plasma is limited to 6 passes, SOI, 2005(Sept 5), 2007(June 11, June 27/28), and 2010 (Mar 3, June 19). Our analysis indicates a large variation in ion density and temperature between 2004 and 2010 and between the Voyager 2 data. Although the Enceladus plumes are variable, the very large variability in the ion density and the changing composition from 2004 to equinox appears to be more consistent with the seasonal variation estimated for the ring atmosphere.

1. Introduction

The photo-produced portion of the atmosphere that forms over the main rings is expected to vary seasonally as the source rates of the neutrals produced from the ring particles depend on the ring temperature and on the incident angle of the sun (Tseng et al., 2009). Since this atmosphere is a source of ions for the region studied, examination of plasma data from 2004, when the sun was near southern solstice, and later plasma data as the solar angle reduces toward equinox, might reflect the changing source rate. The source from Enceladus while variable (smith et al. 2010), however, has no known seasonal dependence, however, this same water source has been shown to influence the seasonal oxygen source from the A ring (Tseng et al 2010, Tseng & Ip, 2010). We found there was a significant drop in the density and temperatures of the ions between the Cassini SOI pass, the Voyager 2 pass and the Cassini passes examined between 2005 and 2010. The data also indicates a stronger O₂⁺ peak closer to the rings and an

enhanced water (W+) group ion peak containing: O⁺, OH⁺ and H₂O⁺, peak closer to Enceladus.

The large variability observed in the density and temperature and compositional data in this study seems to correspond more closely to the seasonal effects modeled by Tseng et al (2009). However, solar activity levels and Enceladus plume variability can affect our results.

2. References

Bouhram, M, R.E. Johnson, J.-J. Berthelier, J.-M. Illiano, R.L. Tokar, D.T. Young, and F.J. Crary, "A test-particle model of the atmosphere/ionosphere system of Saturn's main rings", *Geophysical. Res. Letts.* 33, 2006.

Johnson, R.E., J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Siler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, "Production, Ionization and Redistribution of O₂ Saturn's Ring Atmosphere", *Icarus* 180, 393-402, 2006.

Johnson, R.E., Smith, H.T., Tucker, O.J., Liu, M., Burger, M.H., Sittler, E.C., Tokar, R.L., "The Enceladus and OH torus at Saturn", *Astrophysical Journal*, 644, 2006.

Lewis, G.R., Andre, N., Arridge, C.S., Coates, A.J., Gilbert, L.K., Linder, D.R., Rymer, A.M., "Derivation of density and temperature from the Cassini-Huygens CAPS electron spectrometer", *Planetary and Space Science*, 56, 2008.

Lewis, G.R., "ELS moments", Private communication

Luhmann, J.G., R.E. Johnson, R.L. Tokar, S.A. Ledvina, and T.E. Cravens, "A model of the ionosphere of Saturn's rings and its implications", *Icarus* 181, 465-474, 2006.

Martens, H. R., Reisenfeld, D. B., Williams, J. D., Johnson, R.E., Smith H. T., "Observations of molecular oxygen ions in Saturn's inner magnetosphere", *Geophys. Res. Lett.* , 2009.

Smith, H.T., Johnson, R.E., Perry, M.E., Mitchell, D.G., McNutt, R.L., Young, D.T., "Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere", *Journal Geophysical Review*, 115, 2010.

Tokar, R.L., and 12 colleagues, "Cassini Observations of the Thermal Plasma in the Vicinity of Saturn's Main Rings and the F and G Rings." *Geophys. Res. Lett.* 32, 2005.

Tokar, R.L., Wilson, R.J., Johnson, R.E., Henderson, M.G., Thomsen, M.F., Cowee, M.M., Sittler, E.C., Young, D.T., Crary, F.J., McAndrews, H.J., Smith, H.T., "Cassini detection of water-group pick-up ions in the Enceladus torus", *Geophys. Res. Lett.*, 35, 2008.

Tseng, W.-L., W.-H. Ip, R.E. Johnson, T.A. Cassidy, and M.K. Elrod, "The Structure and Time Variability of the Ring atmosphere and ionosphere", *Icarus*, 2010.

Tseng, W.I., Ip, W.H., "An assessment and test of Enceladus as an important source of Saturn's ring atmosphere and ionosphere", *Icarus*, March 2011, p 294-299.

Wilson, R.J., Tokar, R. L., Henderson, M.G., "Thermal Ion Flow in Saturn's Inner Magnetosphere Measured by the Cassini Plasma Spectrometer: A Signature of the Enceladus Torus" *Geophysical, Res. Lett.* 2007.