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Abstract

Most small bodies are faint and often produce low
quality lightcurves. Using tools from statistics and sig-
nals analysis we can improve the signal-to-noise ratio
and period detection of archived lightcurves. We em-
phasize reanalyzing scientifically interesting targets
and known binaries.

1. Introduction

Ground based observations of minor planetary objects
such as asteroids and comets is an inexpensive and ef-
fective way to investigate the history and evolution of
our solar system. One particular investigation involves
measuring the change in brightness of an object over
time, its lightcurve. Under normal conditions a small
body is approximated, to first order, by a tri-axial el-
lipsoid. The rotation of a body varies the reflective
area of the object, producing a lightcurve whose am-
plitude varies with the reflective area. The rotational
period can be determined by observing these varia-
tions. Additional amplitude variations can indicate the
object’s shape as well as major surface features such as
craters. There may also be additional variation which
occurs regularly but with a different period than that
of the rotation, indicating the presence of a moon or
secondary object. This secondary period, in conjunc-
tion with Kepler’s equations and additional estimates
of volume obtained from infrared flux measurements,
provide bulk density estimates of the body; together
with spectral type and meteorite analogues, this can be
used to estimate the object’s porosity [1].

We adapt tools developed over the past decade in the
fields of statistics and signals processing to improve
the analysis of photometric lightcurve data. Some of
these routines, such as wavelet period analysis, are less
sensitive to noise compared with traditional Fourier
techniques. Other techniques, such as those based
on Bayesian statistics, are able to reduce the appar-
ent level of the noise based on information contained
within the signal as well as prior information on the

construction of the signal.

2. Methodology

In our analysis, when the complete photometric data-
set is present, we use new centering techniques to im-
prove the SNR of our photometry. We then take these
lightcurves, or ones obtained from the archive, and use
Bayesian statistics in denoising the data to further im-
prove the signal to noise ratio. Accurate approxima-
tions for the periods present will then be generated
from Szego polynomials, to be used as the starting
points in phase dispersion minimization. The resulting
periods are then compared to a wavelet transformation
to investigate whether the period is localized or possi-
bly changing in time.

2.1. Denoising

Bayesian denoising, based on Bayesian statistics, es-
timates the denoised values from the structure of the
recorded data and prior knowledge on how the signal
is constructed; it has been shown to reproduce signals
more faithfully than other techniques [2].

2.2. Wavelet Period Analysis

Wavelets use a system of basis functions which are lo-
calized in the time domain with primary span of the
basis functions proportional to the size of the feature,
i.e. frequency, in consideration. This is similar to a
windowed Fourier Transform, but with the width of
the window proportional to the frequency of the trans-
form, allowing investigations at specific time and am-
plitude scales.

2.3. Szego Polynomial Frequency Analysis

Determining periodicities with methods such as
Fourier and wavelet analysis is done by a process anal-
ogous to guess and check. The signal is projected on a
basis of a particular frequency, producing a coefficient
representing how prevalent that frequency is. This is



reliant on testing the correct period and is sensitive to
high levels of noise. Szego polynomials [3] offer an
approach where the end result will asymptote to any
frequencies which are present, independent of large
numbers of iterations.

2.4. Phase Dispersion Minimization

In phase dispersion minimization, [4] the time value
associated with each data point is mapped to a mod-
ulus of some primary period, creating a set of phase
values ranging from zero to one. A median filter is
then applied to the data to create a model from which
residuals can be calculated. The period is then varied
with a minimizer to determine which value produces
the lowest residuals.

3. 549 Jessonda

As an example of a reanalyzed lightcurve, 549 Jes-
sonda has a published period from the lightcurve
database of 0.124 days, seen in Figure 1. We then
create a low order Szego polynomial with this data
to look for periodicities and note a post transforma-
tion period at 0.231 days. Using a minimizer on our
phase dispersion routine near the Szego result we find
a minimum at 0.247 days with a phase curve shown
in Figure 2. We find this curve more likely for two
reasons. First it is bi-modal, a typical trait of aster-
oid rotation curves. Secondly, and more importantly,
while our minimizer does find a local minimum at the
published period (0.097), the minimizer finds a lower
value (0.075) at a period 0.247 days.
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Figure 1: Phase plot of 549 Jessonda using the pub-
lished period of 0.124 days
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Figure 2: Phase plot of 549 Jessonda using a period of
0.247 days

4. Summary and Conclusions

We find that new and adapted tools can success-
fully interpret periodicities in low quality small body
lightcurves. These estimates can then be used for spin
statistics, planning missions, or discovering and esti-
mating binary properties.
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