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Abstract

We compute the librations of Europa and Titan, ex-
tending Smith and Wahr’s model for a biaxial, rotat-
ing Earth to a triaxial, synchronously rotating plane-
tary satellite.

Introduction

The dynamical (i.e. orbital, rotational, and tidal) re-
sponse of a planetary body to the gravitational pull of
neighbouring celestial bodies reflects the structure of
its interior. Evidence for putative oceans in the in-
terior of Europa or Titan might therefore be gleaned
from observations of their rotational behaviour.

As a result of tidal dissipation, many planetary bod-
ies end up as satellites orbiting a parent body along a
nearly circular orbit, locked in a state of synchronous
rotation, and taking the shape of a triaxial ellipsoid.
Librations (i.e. slight variations of the rotation rate)
are the most striking irregularity displayed by the ro-
tation of such planetary satellites. Because the triax-
ial shape favours the action of gravitational torques, it
plays a significant role in the occurrence of librations
and must be taken into account in rotation models.

The rotation of planetary bodies is usually modelled
in one of the following two formalisms:

¢ parameterised rigid body mechanics, where ro-
tation is considered independently of deforma-
tion, which is parameterised through a set of
transfer functions (known as Love numbers or
compliances), leading to finite-dimensional ordi-
nary differential equations (ODE);

e continuum mechanics, where rotation and de-
formation are concurrently considered, leading to
partial differential equations (PDE).

Although triaxiality is readily taken into account in
the equations of rotation of parameterised rigid body

mechanics, in the parameterisation of deformation it
is not, and Love numbers and compliances are usu-
ally computed assuming spherical symmetry and ne-
glecting rotation. For a full consideration of triaxial-
ity, we extend Smith and Wahr’s spectral treatment of
continuum mechanics ([1] and [2]) to synchronously
rotating planetary satellites, modelling rotation pertur-
bations as infinitesimal toroidal displacements of de-
gree 1 from a state of equilibrium (i.e. the state of
steady synchronous rotation with respect to an inertial
reference frame).

Method

We study the dynamics of the planetary satellite close
to a triaxial reference configuration hydrostatically
pre-stressed by its synchronous rotation under the per-
manent gravitational pull of the parent body. Small
deviations from this reference configuration are de-
scribed by linearisation of the equations provided by
the laws of continuum mechanics, the laws of New-
tonian gravitation, and additional assumptions on the
rheology of the interior, which we expand up to the
first order in the (polar or equatorial) flattenings. Spec-
tral decomposition into spheroidal and toroidal com-
ponents turns this system of PDE into an infinite-
dimensional system of ODE: Y’ = AY.

In the spherically symmetric, non-rotating, elastic,
isotropic (SNREI) model, this infinite system is made
up of an infinite number of finite subsystems (radial
Radd, and for any degree ¢ > 1 and order m, spheroidal
sphy* and toroidal Tor7*) decoupled from each other, as
can be seen from a selected 124-dimensional subma-
trix (corresponding to degrees 0 < ¢ < 3) of the infi-
nite ODE matrix A sketched in Fig. 1. In the biaxial,
rotating, elastic, isotropic model, this infinite system
is made up of an infinite number of infinite subsys-
tems (orderwise) decoupled from each other (Fig. 2).
Here, in the triaxial, synchronously rotating, elastic,
isotropic model, this infinite system is made up of four



Figure 1: Spherical, non-rotating, elastic, isotropic
(SNREI) A. The subsystems are sorted in the follow-
ing order: Sph2_2, Tor3_2, Radg, Tor?, Sphg, Torg, Sphg, Torg,
Tor;z, Sph;Z, Sph(l), Torg, Sphg, Tor%, Sphg, Tor;3, Torfl, Sph{l,
Tor;l, Tori, Sphé, Toré, Torg, Sph;3, Sphfl, Tor;l, Sphgl, Sph%,
Tor;, Sph, Sph3.

infinite subsystems decoupled from each other (Fig.
3). This extended coupling shows that rotation pertur-
bations always naturally involve deformation.

Since we focus on librations, we assume the de-
formational component to be smaller than the rota-
tional component (described by the subsystem Tor?)
by one order of magnitude in the flattenings. We
may then truncate the infinite system to the first order
in the flattenings, leaving the 30-dimensional subsys-
tem Rad} @ Tor{ @ Sph, > @ Sph3 @ Sph3 & Tor; > @ Tor3 @ Tor?,
suitable for numerical handling.

We compute the librations of Europa and Titan and
compare our results with those produced by parame-
terised rigid body mechanics (e.g. [3] and [4]).
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Figure 2: Biaxial, rotating A.
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Figure 3: Triaxial, synchronously rotating A.
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