

Parameter Space for an O₃ Layer in Mars' Past

J. Deighan and R. E. Johnson
University of Virginia, Charlottesville, VA, USA (jid7v@virginia.edu)

Abstract

It has been suggested that an O₃ layer might have formed on Mars under past atmospheric conditions, with consequences for photochemistry and climate. This work attempts to identify past conditions capable of supporting a significant O₃ layer in a humid CO₂ Martian atmosphere. Parameter space explored includes surface pressure, humidity, and insolation. Under conditions which do support a significant O₃ layer, effects on atmospheric structure, loss to space, and habitability are investigated.

1. Introduction

The possibility of a significant O₃ layer existing in a thicker past Martian atmosphere has been raised, with some preliminary support from modeling [12,7]. This would have implications for climate, long-term atmospheric evolution, and surface habitability. However, it has also been pointed out that the conditions most likely to produce a substantial O₃ layer are very dry and cold [11]. The purpose of this study is to quantify under what conditions an O₃ layer might have been supported in Mars' past and what its extent and effects would be.

2. Methods

2.1 Radiative-Convective Model

We use a 1D line-by-line LTE radiative-convective model using the plane-parallel approximation to solve for globally averaged thermal equilibrium. The model extends from the surface up to a pressure ~0.1 Pa, where the assumption of LTE begins to fail for the 15 μ m CO₂ cooling line [8]. Radiative calculations are based on the HITRAN 2008 spectral database [9] with a Voigt lineshape near the line center, the Van Vleck-Weisskopf lineshape in the wings, and a χ -factor for CO₂ wings [5]. Collision induced absorption (CIA) by CO₂ follows the treatment of Wordsworth et al. [14,2,4]. In the IR/visible from 0-25000 cm⁻¹ (400 nm), calculations are carried out on a precomputed non-regular wavenumber grid

optimized to resolve radiative lines at < 1 halfwidth. Calculations in the UV are performed from 191-400 nm on a 1 nm regular grid. For absorption cross-sections of photochemical species we use the MT_CKD continuum model [1], MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules [16], and JPL evaluated data [10]. Solar radiation transfer is treated according to the δ -two-stream method of Toon et al. [13].

2.2 Photochemical Model

A photochemical model for humid CO₂ atmospheres is coupled to the radiative-convective model in order to solve for chemical equilibrium as well as thermal equilibrium. Background concentrations of CO₂ and H₂O are adopted and their photochemical products are then generated (O₂, CO, H₂, H, OH, HO₂, H₂O₂). Photochemical equilibrium is found using the Kinetic Pre-Processor (KPP) [3] using a set of reactions similar to those used in other studies of current and ancient Martian photochemistry [6,12,15]. Kinetic rates are taken from Krasnopolsky [6] and the JPL evaluated data [10]. Loss of H₂ to space is treated as diffusion limited, and mechanisms of O₂ loss to either space or the surface are considered [7,15].

3. Summary and Conclusions

This study identifies what conditions in Mars' past would have been conducive to forming a substantial O₃ layer by varying the parameters of atmospheric pressure, humidity, and insolation in the described model. We also explore the resulting effects, such as inhibition of CO₂ condensation, increased stratospheric humidity, H₂ loss to space, and the reduction of UV at the surface. These have consequences for the long-term climate evolution and habitability of Mars.

Acknowledgements

This research was funded by a grant from the NASA Planetary Atmospheres program.

References

- [1] Clough, S.A., et al., JQSRT 91, 2005.
- [2] Baranov, Y. I., et al., J. Mol. Spectrosc. 228, 2004.
- [3] Damian, V., Comp. and Chem. Eng. 26, 2002.
- [4] Gruszka, M., Borysow, A., Molecular Physics 93, 1998.
- [5] Halevy, I., et al., JGR 114, 2009.
- [6] Krasnopolksy, V. A., Icarus 185, 2006.
- [7] Lammer, H., et al., Icarus 165, 2003.
- [8] López-Valverde, M. A., et al., Icarus 114, 1998.
- [9] Rothman, L.S., et al., JQSRT 110, 2009.
- [10] Sander, S.R., et al., JPL Evaluation 16, 2009.
- [11] Segura, A., et al., A&A 472, 2007.
- [12] Selsis, F., et al., A&A 388, 2002.
- [13] Toon, O.B., et al., JGR 94, 1989.
- [14] Wordsworth, R., et al., Icarus 210, 2010.
- [15] Zahnle, K.J., et al., JGR, 113, E11004, 2008.
- [16] <http://www.atmosphere.mpg.de/spectral-atlas-mainz>