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The group IVA fractionally crystallized iron mete-
orites display a diverse range of metallographic cool-
ing rates, ranging from 100 - 6600 K/Myr [1]. These
have been attributed to their formation in a metallic
core, ∼150 km in radius that cooled to crystallization
without any appreciable insulating mantle. Such an
exposed core may have resulted from a hit-and-run
collision [2] between two large (∼ 103 km) proto-
planetary bodies. Here we build upon this forma-
tion scenario by incorporating several new constraints.
These include (i) a recent U-Pb radiometric closure
age of 4565.3 Mya (<2.5 Myr after CAIs) for the
group IVA iron Muonionalusta [3], (ii) new measure-
ments and modeling of highly siderophile element
compositions for a suite of IVAs, and (iii) consider-
ation of the thermal effects of heating by the decay of
the short-lived radionuclide 60Fe.

Fractional Crystallization Model: We model the
fractional crystallization sequence of the IVA system
using an approach similar to [4]. With initial S, P,
Re and Os compositions of 3%, 0.1%, 295 ppb and
3250 ppb respectively we find that compositions simi-
lar to Muonionalusta are produced after ∼60% frac-
tional crystallization. For an inwardly crystallizing
core [5] this suggests formation at 70% the radius, R,
of the body. The results of our fraction crystallization
model are presented in Figure 1.

Thermal Conduction Model: To match the wide
range of IVA cooling rates we follow [1] by assum-
ing an exposed core that cools without any insulating
silicate mantle. We solve the 1D thermal conduction
equation [6] for cores with variable amounts of live
60Fe, ranging from zero [7] up to a plausible maxi-
mum of 60Fe/56Fe = 4 x 10-7 [8]. With core size and
60Fe abundance as the primary variables in this model,
we fit both the range of IVA cooling rates and the crys-
tallization of Muonionalusta at 4565.3 Myr at a radius
of 0.7R.

Results: Our calculations suggest that the IVA core
was 50-110 km in radius after the hit-and-run colli-
sion (Fig. 2). This range is primarily due to uncer-
tainties in the initial abundance of live 60Fe incorpo-
rated into the IVA core. This emphasizes the need to

better constrain initial 60Fe abundances for the IVAs
and other iron meteorites that may have crystallized
in mantle-free parent bodies within a few half-lives
of 60Fe after CAI formation (τ1/2=2.62 Myr). Can-
didates for such early crystallization include the IIAB,
IIIAB and IVB groups. Lastly, our models define a re-
lationship between cooling rate and closure age. For
example, IVAs with the fastest cooling rates (>1000
K/Myr) may have absolute ages separated by as little
as a few times 105 years after CAI formation. The de-
tails of this relationship can be firmly established if old
U-Pb ages are confirmed/measured for Muonionalusta
and other IVAs. This would have important implica-
tions for understanding the chronology of the earliest
planetary bodies in the Solar System.

Figure 1: Plot of Re versus Os for 14 group IVA iron
meteorites. The solid line is the fractional crystalliza-
tion trend for 50:50 mixes of equilibrium solids and
liquids. Tick marks indicate 20 through 80% extents
of fractional crystallization (0.58-0.93R in an inwardly
crystallizing core). The grey star represents the as-
sumed initial liquid composition; the open star denotes
the composition of the first solid to form from this liq-
uid.
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Figure 2: U-Pb closure ages at different depths
for a range of parent body sizes with initial
60Fe/56Fe=4×10−7 (A) and 60Fe/56Fe=0 (B). The
thick curve (0.7R) represents the expected radius of
Muonionalusta’s origin. The grey region denotes
Muonionalusta’s closure age of 4565.3±0.1 Ma. The
size estimate for the IVA parent body from [1] is
shown at the bottom right. The closure age at the for-
mation radius of Muonionalusta is reproduced for core
radii between 50 (panel A) and 110 km (panel B), de-
pending upon the initial abundance of60Fe.


