

LRO-LAMP Determination of FUV Reflectances in the Moon's Permanently Shadowed Regions

G. R. Gladstone (1), K. D. Rutherford (1), S. A. Stern (2), A. F. Egan (2), P. F. Miles (1), M. H. Versteeg (1), D. C. Slater (1), M. W. Davis (1), J. Wm. Parker (2), D. E. Kaufmann (2), T. K. Greathouse (1), A. J. Steffl (2), J. Mukherjee (1), D. G. Horvath (1), P. M. Rojas (1), P. D. Feldman (3), D. M. Hurley (4), W. R. Pryor (5) and A. R. Hendrix (6)

(1) Southwest Research Institute, San Antonio, Texas, USA (rgladstone@swri.edu), (2) Southwest Research Institute, Boulder, Colorado, USA, (3) The Johns Hopkins University, Baltimore, Maryland, USA, (4) The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA, (5) Central Arizona College, Coolidge, Arizona, USA, (6) Jet Propulsion Laboratory, Pasadena, California, USA

Abstract

The Moon's permanently shadowed regions (PSRs) near each pole present difficult targets for remote sensing. The Lyman Alpha Mapping Project (LAMP) instrument on the Lunar Reconnaissance Orbiter (LRO) mission is able to map PSRs at far-ultraviolet (FUV) wavelengths using faint sources of illumination from the night sky; the all-sky Ly α glow produced as interplanetary H atoms scatter the Sun's bright Ly α emission line, and the much fainter source from UV-bright stars.

1. Introduction

LAMP [1] is an FUV imaging spectrograph on NASA's LRO mission [2]. Since September 15, 2009 The LAMP instrument has been observing FUV brightnesses on the nightside of the Moon to search for indications of water frost and other surface volatiles in PSRs. LAMP accomplishes this by measuring the signal reflected from the nightside lunar surface and in PSRs using interplanetary medium (IPM) Ly α and FUV starlight as light sources. Both these light sources provide fairly uniform, faint illumination and are estimated using model fits of SOHO/SWAN data for the IPM Ly α illumination and IUE data for stellar fluxes (plus LOLA topography for sky visibility) in order to convert LAMP-observed brightnesses into albedos.

2. Observations

LRO's ~50-km polar orbit provides for repeated observations of PSRs, enabling accumulation of the faint reflected FUV signal with the photon-counting LAMP instrument. LAMP has an FUV passband of

57-196 nm, and its $6^\circ \times 0.3^\circ$ slit is mostly nadir pointed (long axis normal to LRO's ground track). With LAMP's sensitivity the nightside count rate due to reflected IPM Ly α light is ~200-300 counts/s over the entire slit, which from an altitude of ~50-km amounts to >150 counts/km² from each ~5-km wide orbit swath. The background count rate is very low (~20 counts/s), so the signal-to-noise ratio (SNR) for a Ly α albedo map is approximately the square root of the number of counts per bin.

3. Results

The Ly α albedos of PSRs are quite variable, as shown in Figure 1. Most PSRs (e.g., Haworth, Shoemaker, Faustini) are considerably less reflective (A~0.03) at Ly α wavelengths than are their surroundings (A~0.04). However, some PSRs (e.g., Shackleton, and a similar-sized crater on the southern rim of Nobile crater) are comparably or more reflective than their surroundings. The lower albedo regions are roughly correlated with the coldest regions reported in Diviner temperature maps [3].

In this presentation we investigate some possible causes of this albedo darkening at Ly α wavelengths, e.g. the presence of UV-absorbing volatiles at the surface and/or changes in surface properties (e.g., roughness) at these interesting locations. Because of the near-uniform illumination by the IPM Ly α (and somewhat less uniform stellar illumination), the LAMP-determined surface albedos are closely related to the single-scattering albedo (ω_0) of the surface particles [4], with $\omega_0 \sim 4A$. Fig. 2 shows how FUV albedos of the PSR and non-PSR surfaces inside Haworth crater vary with wavelength, compared with previous observations and simple

expectations. Note the relative redness of the PSR versus non-PSR locations, possibly indicating the presence of volatiles.

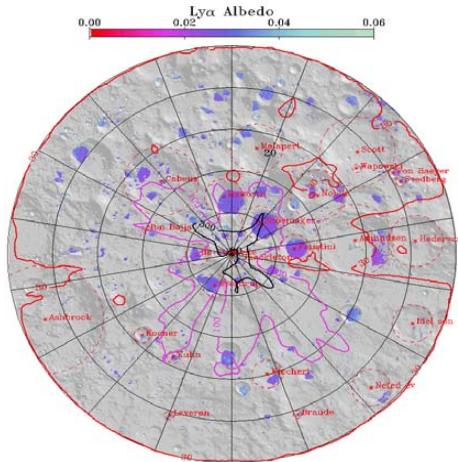


Figure 1: LAMP nightside Ly α albedos of LOLA-determined PSRs [5] near the south pole, overplotted on a shaded relief map of a LOLA 240m DEM. The 30 (red), 100 (purple), and 300 (black) contours show accumulated LAMP counts in counts/240-m pixel, which is approximately SNR². Some important craters with PSRs are indicated.

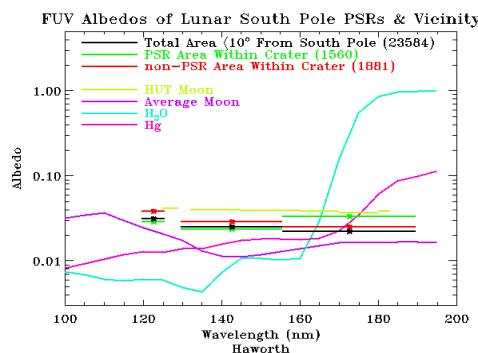


Figure 2: LAMP nightside FUV albedos near the south pole (black), compared with the PSR (green) and non-PSR (red) parts of Haworth crater. The continuous curves show the sub-solar geometric albedo (yellow-green) measured by HUT [6], and calculated plane albedos [7,8] for the average Moon [9], water [10], and elemental mercury [11].

Acknowledgements

We thank the LRO project for LAMP support: C. Tooley, D. Everett, M. Houghton, A. Bartels, C. Baker, R. Saylor, R. Vondrak, G. Chin, J. Keller, T. Johnson, and S. Odendahl. LAMP is funded by NASA, whose support we gratefully acknowledge.

References

- [1] Gladstone, G. R., et al.: LAMP: The Lyman Alpha Mapping Project on NASA's Lunar Reconnaissance Orbiter Mission, *Space Science Reviews*, Vol. 150, pp. 161-181, 2010.
- [2] Chin, G., et al.: Lunar Reconnaissance Orbiter overview: The instrument suite and mission, *Space Science Reviews*, Vol. 129, pp. 391-419, 2007.
- [3] Paige, D. A., et al.: Diviner Lunar Radiometer observations of cold traps in the Moon's south polar region, *Science*, Vol. 330, pp. 479-482, 2010.
- [4] Hapke, B.: *Theory of reflectance and emittance spectroscopy*, Cambridge University Press, 1993.
- [5] Mazarico, E., et al.: Illumination conditions of the lunar polar regions using LOLA topography, *Icarus*, Vol. 211, pp. 1066-1081, 2011.
- [6] Henry, R. C., et al.: Ultraviolet albedo of the Moon with the Hopkins Ultraviolet Telescope, *Astrophysical Journal*, Vol. 454, pp. L69-L72, 1995.
- [7] Goguen, J. D., et al.: A new look at photometry of the Moon, *Icarus*, Vol. 208, pp. 548-557, 2010.
- [8] Mishchenko, M. I., et al.: Bidirectional reflectance of flat, optically thick particulate layers: An efficient radiative transfer solution and applications to snow and soil surfaces, *Journal of Quantitative Spectroscopy and Radiative Transfer*, Vol. 63, pp. 409-432, 1999.
- [9] Shkuratov, Y., et al.: A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, *Icarus*, Vol. 137, pp. 235-246, 1999.
- [10] Warren, S. G.: Optical constants of ice from the ultraviolet to the microwave, *Applied Optics*, Vol. 23, pp. 1206-1225, 1984.
- [11] Inagaki, T., Arakawa, E. T., and Williams, M. W.: Optical properties of liquid mercury, *Physical Review B*, Vol. 23, pp. 5246-5262, 1981.