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Abstract. The Nice model [1, 2] predicts the giant
planets had numerous close encounters with one an-
other ∼ 4 Gy ago, and that these events led to the
capture of ∼ 0.001 lunar masses of comet-like objects
on orbits consistent with the known irregular satel-
lites [3]. From there, they experienced substantial col-
lisional evolution, enough to grind themselves down
to their current low-mass states [4]. Using numeri-
cal simulations, we show that in the Jupiter system,
Poynting-Robertson (P-R) drag [5] drove most of the
debris, in the form of small particles, onto Callisto and
Ganymede. This likely explains why their most an-
cient terrains appear buried in a ∼ 50-200 m layer of
dark carbonaceous chondrite-like material.

Motivating problem. Irregular satellites are dormant
comet-like bodies that reside on distant prograde and
retrograde orbits around the giant planets. They were
likely captured during the violent reshuffling of the gi-
ant planets described by the Nice model [1, 2, 3]. As
giant planet migration scattered > 20 Earth masses of
comet-like bodies throughout the Solar System, a few
found themselves near giant planets experiencing mu-
tual encounters. In some cases, the perturbations were
sufficient to capture the comets onto irregular satellite-
like orbits via three-body reactions.

A problem with this scenario, however, concerns the
observed size-frequency distributions (SFDs) of the ir-
regulars, which have little mass and shallow power-
law slopes for D > 8-10 km (Fig. 1). In comparison,
Jupiter’s Trojans, which were probably captured at the
same time from the same source population in the
same abundance, are 100 times as massive (∼ 0.001
lunar masses) and have steep SFDs, particularly be-
tween 100 < D < 200 km. To explain this dis-
crepancy, we invoke collisional evolution [4], where
the irregulars self-destruct once caught (Fig. 1). With
no place to go, the fragments should grind themselves
down into small particles.

Nature of particles. The size range of these puta-

Figure 1: Snapshots of how Jupiter’s initial irregular
satellite populations undergo collisional evolution [4].
Most mass is eliminated in < 100 My.

tive particles is unknown, but insights can be gleaned
from terrestrial micrometeorites, most which are prim-
itive CM/CI-like bodies produced by the disruption
of Jupiter-family comets (JFCs) [6]. Because JFCs
come from the Kuiper belt/scattered disk, they repre-
sent members of the same source population that pro-
duced the irregular satellites. Measurements of mi-
crometeorites from Antarctic water wells [7], as well
as those inferred from impact craters on the LDEF and
Genesis spacecrafts [8, 9], suggest their SFD peaks
near D ∼ 200 µm.

Irregular satellite particles with D ∼ 10-500 µm
drifting inward by P-R drag [5] should eventually in-
teract with or even hit the outermost Galilean satellites.
We find this intriguing because the oldest terrains on
Callisto and Ganymede are the darkest, and they spec-
trally look like water ice contaminated by a blanket of
dark, non-icy material with spectral properties similar
to CI/CM meteorites [10, 11].
Particle evolution. To test this, we computed the ac-
cretion efficiency of irregular satellite particles evolv-
ing down to the Jupiter’s regular satellites. We tracked
particles with D = 10, 20, 50, 100, and 200 µm and
bulk densities of 1 g cm−3. Thousands of particles
were assigned to each size and were given starting or-
bits with semimajor axis a = 0.04-0.18 AU, eccen-
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tricity e = 0-0.7, and isotropic inclinations. The par-
ticles were removed if they hit a satellite, Jupiter, or
they reached beyond 0.6 AU from the planet. Fig. 2
shows the dynamical evolution of a representative
D = 50 µm particle started on a retrograde orbit.

Figure 2: A D = 50 µm retrograde particle evolving
quietly by P-R drag (i.e., no resonances encountered)
until it scatters off Callisto and hits Ganymede.

Fig. 3 shows our net accretion statistics. Larger par-
ticles, with slower drift speeds than smaller ones, are
more likely to be swept up by the outermost moons.
This means that particles avoiding Callisto may reach
Ganymede, and to a lesser extent, Europa (and Io). We
find that D > 50 µm particles evolve slowly enough
that 30-40% end up hitting Callisto. If we assume
0.001 lunar masses was in the form of such particles,
it would produce a∼ 200 m layer on Callisto. This re-
sult is consistent with the quantity of dark lag material
found there, with some material mixed into the upper
few kilometers of Callisto’s crust by impacts (Fig. 4) .

Our results are also consistent with the nature of
Ganymede’s dark, ancient terrains as well as the lim-
ited dark lag deposits found within Europa’s young
low-lying valleys [11, 12, 13].
Implications. Terrain brightness, when combined
with our model results, may provide a alternative
means for dating Galilean satellite surfaces (i.e., bright
= young; dark = old). It would be interesting to
compare such ages with those deduced from crater
counts/impactor flux models.

The Saturnian and Uranian systems also had compa-
rable irregular satellite systems in the LHB era [3, 4].
This may explain why many Uranian moons appear
covered by a dark non-icy material similar to CI/CM

Figure 3: Net accretion of D = 10, 20, 50, 100, and
200 µm particles on the Galilean satellites.

Figure 4: Close-up of Callisto’s Valhalla crater.

meteorites. Intriguingly, if Titan gets as much mate-
rial as Callisto/Ganymede, it could provide alternative
means for making its dark dunes.
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