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1. Introduction

Profound developments in our understanding of the
Earth and Moon have arisen as a direct outcome of
rotation studies (e.g., [1, 2, 3, 4]). Likewise, mea-
surements of the rotation of other bodies can pro-
vide powerful probes of planetary interior structure
and processes. This talk will describe ongoing high-
precison measurements of the rotation of Mercury,
Venus, and the Galilean Satellites. The data are ob-
tained by recording radar speckles at two separate sta-
tions, as advocated by Holin [5, 6].

2. Mercury

Observations of radar speckle patterns tied to the ro-
tation of Mercury establish that the planet occupies a
Cassini state with obliquity 2.11 +/- 0.1 arcminutes.
The measurements show that the planet exhibits libra-
tions in longitude that are forced at the 88-day orbital
period, as predicted by theory [7, 8]. The amplitude
of the oscillations together with spacecraft determina-
tions of the gravitational harmonic coefficient Cs; in-
dicates that the mantle of Mercury is decoupled from
a core that is at least partially molten [9]. Combining
the obliquity, libration amplitude, and gravity informa-
tion yields the polar moment of inertia of the planet as
well as an estimate of the size of the core [7, 8]. Be-
cause MESSENGER will deliver gravity coefficients
with <1% errors [10], the uncertainty in the core size
determination will be dominated by the precision of
the spin state estimates.

If present and measurable, departures from the ex-
act Cassini state and long-term libration signatures can
inform us about core-mantle interactions.

3. Venus

Earth-based radar observations show that the spin pe-
riod of Venus is not constant. The variations are
compatible with percent-level changes in atmospheric
angular momentum transferred to the solid planet.

Monitoring these fluctuations provides important con-
straints on the atmospheric dynamics and climate of
Venus. As on Earth a rich spectrum of secular and
seasonal trends can be expected, with excitations on a
wide range of timescales that are diagnostic of diverse
geophysical phenomena. Securing a well-sampled
time history of length-of-day variations and polar mo-
tion at Venus will reveal much about the planet closest
in size and mass to Earth.

There are no data constraints on the polar moment
of inertia of Venus, a fundamental quantity that can be
derived by measuring the spin precession. The motion
of the pole in inertial space is only 2 arcseconds/year
due to the small obliquity [11]. Because the Magel-
lan estimates of the spin orientation have uncertain-
ties of 15-45 arcseconds [12, 13], much larger than the
precision required, prospects for linking these data to
modern estimates are limited. Earth-based observa-
tions spanning a decade have the potential to track the
spin orientation to a few arcseconds, and to provide a
measurement of the moment of inertia.

4. Europa

Measuring the spin state of Europa holds the key to
fundamental interior and surface properties. The am-
plitude of the longitude libration is strongly dependent
on the thickness and rheology of the icy shell, perhaps
the most important determinants of Europa’s astro-
biological potential. Europa’s obliquity may explain
remarkable surface features, such as the distribution
and shape of cycloids, and the direction of strike-slip
faults. We have proposed an observing campaign with
the Goldstone radar and the Green Bank Telescope to
quantify the obliquity and libration, starting in Sep.
2011. We anticipate a detection of a non-zero (>0.1°)
obliquity, and a possible detection of the longitude li-
bration, depending on its amplitude. Because of strin-
gent signal-to-noise and geometry requirements, there
is no comparable opportunity for these measurements
until 2023. If successful, we will consider similar
measurements of Ganymede.
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