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Abstract
The observed ratio of the degree-2 gravity coefficients
of Titan, J2/C22 ∼ 10/3, is consistent with a degree-2
gravity field and moments of inertia dominated by hy-
drostatic rotational and tidal deformation. We consider
the effect of non-hydrostatic contributions to validate
the significance of this ratio. We illustrate that the ob-
served ratio is also consistent with a degree-2 grav-
ity field and moments of inertia dominated by fossil
figure and/or mass anomaly contributions. However,
a dominant fossil figure contribution is unlikely since
the expected orbital migration is small, and a domi-
nant mass anomaly contribution can be rule out given
the observed power spectrum of the gravity field.

1. Introduction
The Radau-Darwin approximation is commonly used
to estimate the mean moment of inertia of planetary
bodies under the assumption of hydrostatic equilib-
rium. Iess et al. [1] estimated a mean moment of in-
ertia for Titan I = 0.34 mr2, where m and r are the
satellite mass and radius, using gravity data and the
Radau-Darwin approximation.

If Titan is in hydrostatic equilibrium, the degree-2
gravity harmonic coefficients can be written as [2]

J2 =
1
6
kT
2

Mr3

ma3
[QT − 2QR]

C22 =
1
12

kT
2

Mr3

ma3
QT , (1)

where M is Saturn’s mass, a is Titan’s semimajor axis,
and kT

2 is the secular degree-2 tidal Love number [e.g.
3]. In Eq. (1),
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3
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]
QT ≡ 3H(p, e) (2)

are dimensionless coefficients characterizing the dis-
tortions around the rotation and tidal axes respectively.

These coefficients are functions of the spin-orbit res-
onance coefficient, p, defined as the ratio between the
rotation rate and the mean motion, and the orbital ec-
centricity, e. In Eq. (2), H(p, e) are Hansen coeffi-
cients, commonly used in expansions of elliptical mo-
tion [e.g., 4, Table 1]. Since Titan is in synchronous
rotation, p = 1 and H(p, e) = 1−5e2/2+ · · · , where
we ignore higher order terms in eccentricity.

The ratio
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is a function of the spin-orbit resonance ratio and or-
bital eccentricity; however, it is independent of the
secular degree-2 tidal Love number and the semima-
jor axis. It is useful to consider the case of e � 1
since Titan’s orbital eccentricity is 3%. In this case;
QR ∼ −1, QT ∼ 3, and J2/C22 ∼ 10/3. The ex-
pected ratio of 10/3 is in agreement with the value es-
timated using Cassini, Pioneer, and Voyager data, and
astronomical observations of Saturn and its satellites
[1]. This has been taken as evidence that the degree-
2 gravity field and moments of inertia of Titan are
dominated by hydrostatic rotational and tidal deforma-
tion. We consider the effect of non-hydrostatic contri-
butions to validate the significance of the ratio between
J2 and C22.

2. Fossil figure
If the rotation rate, semimajor axis, or orbital eccen-
tricity of Titan has changed since the time finite rigid-
ity is established, a fossil figure can preserve a record
of remnant rotational and tidal deformation. In this
case, the gravity coefficients have equilibrium con-
tributions that describe the deformation in response
to the present rotational and tidal potentials, and fos-
sil figure contributions that describe the remnant rota-
tional and tidal deformation [2]. We will illustrate that
a fossil figure due to changes in rotation rate and/or
orbital eccentricity is not consistent with the observed
J2/C22. On the other hand, we will also show that for
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a fossil figure due to changes in semimajor axis alone,
J2/C22 is equal to the expected hydrostatic value of
10/3. Thus, the observed J2/C22 is also consistent
with a gravity field and moments of inertia dominated
by a fossil figure due to orbital migration.

Zebker et al. [5] argued that the observed, non-
hydrostatic, degree-2 topography of Titan can also be
explained by a fossil figure due to orbital migration.
However, we will show that a fossil figure due to
orbital migration alone cannot explain the observed
degree-2 topography. Furthermore, significant orbital
migration is unlikely given the expected tidal dissipa-
tion within Saturn [6]. If the observed J2/C22 is due to
hydrostatic rotational and tidal deformation, the non-
hydrostatic topography can be explained by compen-
sated mass anomalies [6].

3. Mass anomalies
Mass anomalies can also contribute to the gravity field
and moments of inertia of Titan. Figure 1 shows the
probability density of J2/C22 from 105 simulations of
randomly distributed mass anomalies. The probabil-
ity density is not sensitive to the number or size of
the mass anomalies. The maximum of the probability
density corresponds to a J2/C22 value that is similar
to the hydrostatic value of 10/3. Therefore, the ob-
served J2/C22 is also consistent with a gravity field
and moments of inertia dominated by mass anomalies.
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Figure 1: Probability density of J2/C22 from 105 sim-
ulations of randomly distributed mass anomalies. The
vertical line shows the expected value for Titan assum-
ing hydrostatic equilibrium, J2/C22 ∼ 10/3.

If Titan is in hydrostatic equilibrium, the power
spectrum of the gravity field must be dominated by
degree 2. Thus, the observed degree-2 and degree-
3 gravity coefficients provide an additional constraint
[1]. We will illustrate that the observed power spec-
trum rules out a gravity field dominated by mass

anomalies.
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