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1. Introduction

In a perfect system, the Laplace plane (LP) is the
plane about which the orbital inclination remains con-
stant throughout the precessional cycle. It can be
viewed as the “mean orbital plane”. For Mercury,
knowing this plane is important because the Cassini
state and the equilibrium obliquity refer to it.

We define a general Laplace plane based on geomet-
rical considerations. The Laplace plane for a regu-
lar motion is deduced from the previous definition by
adding dynamical constraints of constant inclination
and regular precession around a fixed axis. A compar-
ison to the simplified model of the secular potential is
given.

Then we apply it to the true orbit of Mercury and com-
pare different LP estimations.

2. Definition of the angles

Figure 1: Positions of the Laplace plane (f; f2 in blue)
and orbital planes (in red) and the different angles
in the problem. The ecliptic frame (e1,e2,e3) is
in black. The orbital plane is precessing around the
Laplace plane.

From trigonometric equations in the yellow spheri-
cal triangle, we can find the expression for the orbital
elements (¢o and (1) as a function of the angles re-
lated to the Laplace plane for a synthetic case.

The « angle is the X;x; angle from the ascending
node of the orbit on the inertial plane to the ascending
node of the orbit on the Laplace plane.

1o 1s the angle between the vector w (or the normal-
ized vector wy o) and the orbit normal x3. u is the
precession rate around the LP.

3. Geometrical definition of the LP

Using rotation matrix, the position of the instanta-
neous rotation vector (or orbital angular velocity vec-
tor) is:

w = -MM!= (cos Qoi'o + sin ‘o sin Qo o/, (1)
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Another way to find w is the vectorial product [3]:

W X X3 =V 2

v is the orbital velocity.
In Eq. 1, the only unknown parameter is the time
derivative of the angle a(t). Since we do not assume
anything for the angles Qoyr, ior, iz and €0y, in this
section, the angle «(t) (and then the position of x; and
X9 with respect to X; and X5) can be chosen freely.
Choosing «(t) will fix the position of our generalized
Laplace plane.
Since all the w vectors belong to the same plane as the
orbit normal (plane perpendicular to v), the orbital an-
gular velocity vectors w given by eq. 1 for any value of
the o/ parameter give the same coplanarity condition
for the Cassini state.

There is a degree of freedom because we describe
the motion of a plane, not a body.

The normal to the Laplace plane is different from
the angular momentum vector of the planet.

Quantities related to the vector w

By taking the norm of the vectorial product (2), we
find a useful equation:

psinior = \/sin? io QF + 42 (3)

This equation is independent of the choice of the pa-
rameter ' and is equal to the orbit velocity norm
around the ecliptic pole.



4. The LP for a regular motion

For a perfectly regular motion, we impose 3 dynamical
constraints:

- a fixed LP position (diy, /dt = dQ /dt = 0)

- a constant inclination (d cosioyr, /dt = 0)

- a constant precession rate (du/dt = 0)

Then the free parameter o is given by:

o p = cosioQy +sinioN) /io 4)

5. Secular potential

For the natural satellites, the potential usually takes
into account the planet oblateness, the external or in-
ternal perturbers, the Sun,...

For Mercury, the secular potential includes the secular
effect of all the planets on its motion; it has no mutual
planetary perturbations.

If the potential is simple and for small inclinations,
the solution for the motion is the sum of a free part
and a forced part. The secular Laplace plane position
is the forced part and is given by the mean value of the
orbital coordinates [4].

6. Application to Mercury orbit

Why is it tricky to compute the LP position for Mer-
cury?

- because the orbit motion not perfectly regular (the
deviation of the true motion of Mercury from a regu-
lar motion, given by Eq. 3, has variations of about 1%
over 2 ky).

- the orbit is known over a short interval (about 20 ky
< precession period of the orbit ~ 300 ky).

- numerical computation of the orbital elements and
their time derivatives (averaged on which timescale?).

How to fix the free degree of freedom numerically
(Fig. 2)?
- Fit a cone to the ephemerides [3]
- Arbitrarily choose the free parameter (o’ = 0 [1])
- 5 parameters fit (o1, ior, ir, Q1 and p)

7. The Cassini state

The conditions defining the Cassini state:

The spin axis, orbit normal, and normal to the Laplace
plane are coplanar while the obliquity remains con-
stant.

The equilibrium obliquity of Mercury (3:2 reso-
nance) in the Cassini state links the LP parameters
(t0r, and p) to the interior properties (moment of iner-
tia C).
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Figure 2: Projection in the ecliptic plane

Uncertainty on C'/M R? due to the uncertainty on
the LP from different authors ([1], [3]) = 0.1%

Target uncertainty for C'/M R? from the ESA Bepi-
Colombo spacecraft ~ 0.3% [2]

8. Laplace plane: Summary

- For a regularly precessing orbit, the Laplace plane
position can be found using a geometrical approach
and dynamical constraints.

- If the motion is not perfect, the generalized Laplace
plane is moving with time or the orbital inclination is
not constant with time. Its definition is less clear.

- For Mercury, the orbital motion is known on a very
short interval. It is difficult to evaluate the LP position
precisely.

- However using the equation for the equilibrium
obliquity of the Cassini state, the uncertainty on the
moment of inertia due to the uncertainty on the LP pa-
rameters is about 0.1%.
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