

Hypervolatiles in Jupiter Family Comet 46P/Wirtanen Observed with IRTF iSHELL

Adam McKay(1,2), Michael DiSanti (1), Boncho Bonev(2), Neil Dello Russo(3), Ronald Vervack Jr.(3), Erika Gibb(4),
Nathan Roth(4), Mohammad Saki(4), Hideyo Kawakita (5)
(1) NASA Goddard Space Flight Center, Maryland, USA, (2) American University, D.C., USA, (3) Johns Hopkins Applied
Physics Laboratory, Maryland, USA, (4) University of Missouri St. Louis, Missouri, USA, (5) Kyoto Sangyo University, Japan

1. Introduction

Comets have a primitive volatile composition that likely reflects the physics and chemistry operating in the region of the protosolar disk where they formed. For this reason studies of volatile material in comets have been considered important for understanding the formation of volatiles during the Solar System's infancy as well as the subsequent incorporation of volatiles into planetary bodies. However, close passages to the Sun during their most recent history means that evolution could also influence the volatile composition of comets we observe today, in particular abundances of extremely volatile species (so-called "hypervolatiles") such as CO and CH₄. This is potentially important for Jupiter Family Comets (JFC's), which likely have dynamical origins in the Scattered Disk and have undergone more close passages to the Sun.

Ground-based high spectral resolution IR spectroscopy has proven to be an effective way of determining the volatile composition of comets, especially hypervolatiles like CO and CH₄[1,2, and references therein]. However, observations of CO and CH₄ at IR wavelengths require both a comet of sufficient brightness and large enough Doppler shift (i.e. large enough geocentric velocity) so as to shift cometary CO and CH₄ emissions away from the absorptions of their telluric counterparts into areas of higher atmospheric transmission. This is rarely achieved for JFC's, which often have low geocentric velocity even when they are bright enough for IR high resolution spectroscopy, making observations of CO and CH₄ vary rare for JFC's.

Comet 46P/Wirtanen provided a rare opportunity to observe hypervolatiles in a JFC during its historic 2018-2019 apparition. While closest approach (and the focus of most of the ground-based observing campaign) was in mid-December, at this time the Doppler shift was not sufficient for studies of CO and CH₄. Here we present observations from January and Febr-

uary 2019 obtained with the iSHELL instrument on IRTF, with a particular focus on CO and CH₄.

2. Observations

We obtained IR spectroscopy of 46P in mid-January and early February, when the comet possessed sufficient Doppler shift for studies of CO and CH₄ but was also still bright enough for IR studies of its volatile composition. We observed in three spectral settings, Lp1 (sensitive to CH₄, C₂H₆, H₂CO, CH₃OH, and OH prompt emission), L_{custom} (sensitive to HCN, C₂H₂, NH₃, and H₂O), and M2 (sensitive to CO, H₂O, and OCS). Details of our observations are given in Table 1. We obtained very long on-source integration times: Lp1 had 280 minutes on-source in January and 140 minutes on-source in February, M2 had 324 minutes on-source in January and 78 minutes on-source in February, and L_{custom} had 156 minutes on-source in January (not observed in February). We will present results from our analysis of these spectra, with a focus on the hypervolatiles CO and CH₄.

Table 1: Log of Observations

UT Date	R _h (AU)	Δ (AU)	Δ̄ (km/s)
Jan 11, 2019	1.128	0.179	+10.1
Jan 12, 2019	1.133	0.185	+10.3
Jan 13, 2019	1.138	0.191	+10.4
Feb 4, 2019	1.271	0.339	+13.2
Feb 5, 2019	1.278	0.346	+13.3

Acknowledgements

This research was supported by a NASA NPP fellowship, administered by the Universities Space Research Association. We acknowledge the entire staff at

the NASA/IRTF for their support, including coordination of a dedicated 46P/Wirtanen observing campaign. NASA/IRTF is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration. We are most fortunate to have the opportunity to conduct observations from Maunakea, and recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We also acknowledge support from National Science Foundation Solar and Planetary Research Grants (AST-1616306, AST-1615441), the NASA Solar System Observations (15-SSO15 2-0028, 80NSSC17K0705), and Earth and Space Science Fellowship (NNX16AP49H) Programs.

References

- [1] Dello Russo, N. et al.: Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013, *Icarus*, Vol. 278, pp. 301-332, 2016.
- [2] Mumma, M. and Charnley, M.: The Chemical Composition of Comets-Emerging Taxonomies and Natal Heritage, *Annual Review of Astronomy and Astrophysics*, Vol. 49, pp. 471-524, 2011.