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Abstract 
Recently, Minton et al. [3] used mare terrains in crater 
equilibrium to show that the topographic degradation 
of 𝐷 < 1	km  craters is dominated by topographic 
diffusion driven by distal ejecta Here we use the 
models developed to understand crater equilibrium of 
the lunar mare for 𝐷 < 1	km craters to the problem of 
equilibrium in the 𝐷 > 10	km heavily cratered lunar 
highlands.  

1. Introduction 
Hirabayashi et al. [2] developed an analytical model 
for crater accumulation and degradation, which can be 
used to model craters in equilibrium. The crater 
production can be approximated as a power law, with  
its cumulative size frequency distribution (SFD) 
taking the form: For the craters relevant to our study, 
we can model production function as a power law of 
the form: 

 𝑛*,,- = 𝑛*,,-/𝑋𝐷
12, (1) 

where, 𝑛*,,-/  is a coefficient that gives the 
cumulative number of craters larger than unity in 
diameter (in the chosen unit system) per unit surface 
area, and 𝜂 is the slope of the production function. The 
variable 𝑋 is the same as that used in Hirabayashi et 
al.  [2], and is a non-dimensional time factor used to 
scale the production function by the exposure age of 
the surface. We use a similar model can define the 
accumulation and degradation of countable craters 
using a first-order linear differential equation: we can 
define the accumulation and degradation of countable 
craters using a first-order linear differential equation: 
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where 𝑑𝑛/𝑑𝐷 is the differential number of countable 
craters, 𝑑𝑛*/𝑑𝐷  is the differential form of the 
production function, and 𝑘′  is a dimensionless 
degradation rate parameter that is defined as the 
fractional change in the differential number of 
countable craters per dimensionless time unit 𝑋 . In 
equilibrium. The equilibrium differential SFD in 
differential form is given as: 
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The equilibrium SFD is also commonly written as in 
cumulative form as power law, given as: 

 𝑛;<,,- = 𝑛;<,,>/𝐷
1?, (4) 

where 𝑛;<,,>/  is a coefficient that gives the 
cumulative number of craters larger than unity in 
diameter (in the chosen unit system) per unit surface 
area, and 𝛽 is the equilibrium slope. In this model, the 
equilibrium SFD is controlled by both the production 
function and the dimensionless degradation rate 
parameter, 𝑘′. 

For craters of the lunar mare, the production function 
can be approximated as a power law with a constant 
slope 𝜂 ≈ 3.  On these surfaces, the dimensionless 
degradation rate parameter can be defined in terms 
linear topographic diffusion. The evolution of a 
topographic surface in linear classical diffusion may 
be given by the diffusion equation of the form 

 
𝜕ℎ
𝜕𝐾 = 𝛻Gℎ. (5) 

We cast the dimensionless degradation rate parameter, 
𝑘′  in terms of topographic diffusion using two 
functions to, each of which is defined in terms of the 
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degradation state 𝐾.  We call these the visibility 
function and the degradation function. The visibility 
function, given by 𝐾H(𝐷), quantifies the amount of 
accumulated degradation required to fully degrade an 
old crater of diameter, 𝐷. The degradation function is 
more complicated, but a simplified form may be on in 
which each new crater of diameter 𝐷K  contributes a 
uniform amount of degradation,  𝐾LM𝐷KN over a finite 
region of diameter 𝑓;𝐷K.  

2. Equilibrium solutions 
Minton et al. [3] constrained the visibility function for 
simple mare craters using a human crater counter 
calibration study, and constrained the degradation 
function using the equilibrium SFD. They found that 
the visibility function was well described by a power 
law, where: 

 𝐾H(𝐷) = 𝐾H,-/𝐷
P. (6) 

For geometrically similar simple craters, 𝛾 = 2. Using 
the equilibrium SFD of lunar mare terrains, they found 
solutions to the degradation function for which the 
solution to equation (3) was the observed equilibrium 
terrain.  

 

Figure 1: Analytical models for crater equilibrium. 
Short dashed line: Equilibrium SFD of lunar mare 

craters from Minton et al. [3]. Dash-dot line:  
Cumulative crater SFD for the Moon for a model age 
of 4.1 Gy using the Neukum Production Function [4]. 
Points: Crater counts of the lunar highlands from the 
LOLA-derived catalogue of craters [1]. Solid line: 
Predicted lunar equilibrium SFD using degradation 
and visibility functions derived of the lunar mare. 

Using the same visibility function, 𝐾H,  and 
degradation function, 𝐾L,  derived for the mare by 
Minton et al. [3], we compute a predicted equilibrium 
SFD for all size craters using the Neukum Production 
Function [4]. Figure 1 shows the predicted equilibrium 
SFD using the analytical model, along with the SFD 
of the simple craters of the lunar mare, and crater 
counts of the lunar highlands from the LOLA-derived 
catalogue of craters [1]. The observed crater counts of 
the lunar highlands are much higher than that 
predicted by the analytical model.  

Because fresh complex craters are shallower than 
fresh simple craters, complex craters should require 
less degradation (lower value of the visibility function) 
to fully degrade compared to that predicted by a 
simple extrapolation from simple craters. This should 
suppress the equilibrium SFD for large craters and 
basins even further below the predicted equilibrium 
SFD shown in Figure 1. Therefore, there must also be 
a very strong reduction of the degradation function at 
large sizes in order for highlands craters to reach the 
observed high crater number density. In other words, 
relative to their size, large complex craters must be 
much less destructive to the pre-existing landscape 
than small simple craters. 
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