

Scattering functions fits for Arecibo Observatory planetary radar data

Luisa F. Zambrano-Marin(1,2), Anne K. Virkki(1), Sean Marshall(1) and Edgard G. Rivera-Valetin(3)
 (1)Arecibo Observatory, University of Central Florida, Arecibo, Puerto Rico (2)Universidad de Granada, Escuela
 Internacional de Posgrado, Facultad de Fisica del Espacio, Granada, Spain (3)Lunar and Planetary Institute, Universities
 Space Research Association, Texas USA. (luisafz@correo.ugr.es)

Abstract

We continue the work of testing scattering models on near-Earth asteroids using dual-polarization radar observations to elucidate their near-surface physical properties [1]. We study the effectiveness of four traditionally used model scattering functions: Hagfors (Eq. 1), exponential (Eq. 2), Gaussian (Eq. 3), and the Cosine law (Eq. 4) and propose a formulation of the Bragg approximation (Eq. 5). We test the suitability of these functions in modeling the near-surface back-scattering process.

1. Introduction

Radar studies of planetary bodies are a cost-effective, ground-based, accurate, and consistent method for studying decimeter-scale structures on the near-surface of asteroids. Previous work [1] included: 3200 Phaethon, 3122 Florence, 285263 (1998 QE₂), 481532 (2007 LE), 441987 (2010 NY₆₅) and 2014 JO₂₅.



Figure 1: Delay-Doppler image of 1998 CS₁, with a resolution of 15 m/px taken on Jan 20, 2009.

We now add to our study: 385186 (1994 AW₁),

136617 (1994 CC), 58707 Kyoshi (1998 CS₁), 185851 (2000 DP₁₀₇) and 153591 (2001 SN₂₆₃). Radar experiments were done using S-band radar (2380 MHz, 12.6 cm) in Continuous Wave (frequency only-CW) and delay-Doppler images using the Arecibo Planetary Radar System.

Hagfors:

$$\hat{\sigma}_H(\theta) = (RC/2)(\cos^4 \theta + C \sin^2 \theta)^{-3/2} \quad (1)$$

Exponential:

$$\hat{\sigma}_E(\theta) = (3RC/\cos^4 \theta)(\exp(-\sqrt{6C} \tan \theta)) \quad (2)$$

Gaussian:

$$\hat{\sigma}_G(\theta) = (RC/\cos^4 \theta)(\exp(-C \tan^2 \theta)) \quad (3)$$

Cosine:

$$\hat{\sigma}_C(\theta) = R(C + 1) \cos^{2C} \theta \quad (4)$$

Bragg Approximation:

$$\sigma_B(\theta) = \left[\frac{4k^4 h_{rms}^2 L^2}{(1 + (2kL \sin \theta)^2)^{1.5}} \right] \left[R_{P\epsilon}^2 \cos^2 \theta + \frac{(\epsilon - 1)(1 + R_{V\epsilon})^2}{2\epsilon} \sin^2 \theta \right] \quad (5)$$

Where:

$$\begin{aligned} R_{P\epsilon}(OC) &= R_{V\epsilon} - R_{H\epsilon} \\ R_{P\epsilon}(SC) &= R_{V\epsilon} + R_{H\epsilon} \\ R_{V\epsilon} &= (\epsilon \cos \theta - \sqrt{\epsilon - \sin^2 \theta}) / (\epsilon \cos \theta + \sqrt{\epsilon - \sin^2 \theta}) \\ R_{H\epsilon} &= (\cos \theta - \sqrt{\epsilon - \sin^2 \theta}) / (\cos \theta + \sqrt{\epsilon - \sin^2 \theta}) \end{aligned}$$

2. Methods

Targets in this study have both CW spectra as well as radar images with enough range-resolution received as a function of a span of backscattering angles. Resolution can range from 7.5 m/px to 600 m/px

depending on targets distance and observing conditions. Reconstruction of the scattering function provides constraints [2] on the near surface composition, placing limits on the values for the real and imaginary parts of dielectric properties such as permittivity (ϵ), the density (ρ), the radar cross section (σ) and the radar albedo ($\hat{\sigma}$). Analysis of the backscattering function is done by plotting the backscattered power as a function of the backscattered angle [3] (θ_i) in both the same-circular (SC) & opposite circular (OC) polarization, primarily selecting targets where a roughly spheroidal shape could be assumed based on said delay-doppler images. We fit the studied functions (Eqs. 1-5) to the back-scattered signal from asteroids of varied sizes and taxonomical classes. We then explore the usefulness of each model, and a combination of models, to constrain near-surface characteristics.

Table 1: Sample values for: Circular Polarization ratio (μ), radar cross section (σ) and total radar albedo ($\hat{\sigma}_T$) for all analyzed targets.

Target	Tax Class	μ	σ	$\hat{\sigma}_T$
1994 AW ₁	Sa	0.303	0.046	0.354
1994 CC	Sq	0.372	0.070	0.210
1998 CS ₁	Sa	0.237	0.192	0.374
2000 DP ₁₀₇	M,C	0.315	0.176	0.301
2001 SN ₂₆₃	C,B	0.165	0.544	0.251

From CW we obtain the circular polarization ratio (μ), the radar cross section (σ) and the radar albedo ($\hat{\sigma}$), a sample of measured values are shown in Table 1. We fit the scattering functions onto the data (Eqs.1-5) to obtain solutions for R (parameter relating to Fresnel reflection coefficient [4]) and C (parameter relating to surface structure [5]). Traditionally, C has been considered to depend only on the surface undulations so that the rms slope of an average surface facet is $s_0 = 1/\sqrt{C}$. We find solutions for L (surface correlation function), hrms (surface height distribution), and ϵ from the fit to our composite Bragg equation.

3. Results and Conclusions

Here, we use 1998 CS₁ to display an example of the radar images used (Fig. 1) and set of scattering models fitted to the observed radar cross section at a specific incidence angle, normalized with an estimate of the contributing area. For this target the Hagfors law provides the best fit to the data, red solid line seen in Fig. 2. The preferred fit is determined by selecting the least χ^2 value from all functions applied to each target.

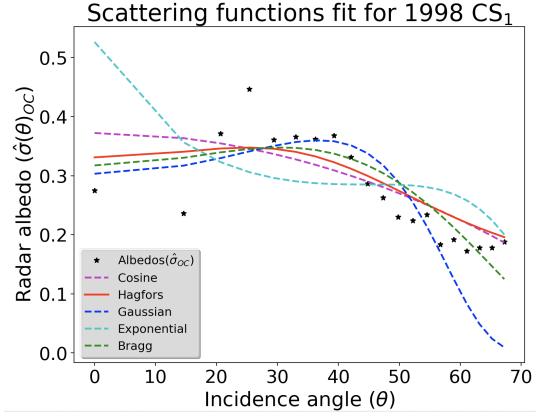


Figure 2: Fit of all scattering functions to the delay-Doppler image of 1998 CS₁ (Fig. 1).

Acknowledgements

This research was supported by NASA's Near-Earth Object Observations Program through grants no. 80NSSC18K1098 and 80NSSC19K0523 awarded to the University of Central Florida and through grant no. NNX13AQ46G awarded to Universities Space Research Association. The Arecibo Observatory is a facility of the National Science Foundation operated under cooperative agreement by University of Central Florida, Yang Enterprises, Inc., and Universidad Ana G. Méndez.

References

- [1] Zambrano-Marin, L.F. et al: Scattering Law Fits for Dual Polarization Radar Echoes of Asteroids Using Arecibo Observatory Planetary Radar Data, 49th Lunar and Planetary Science Conference 2018, (LPI Contrib. No. 2083), Houston TX, 2018.
- [2] Campbell, B.: Radar remote sensing of planetary surfaces, Cambridge University Press, 2002.
- [3] Virkki, A: Modeling Radar Scattering from Icy Lunar Regoliths, Lunar and Planetary Science Conference 2017.
- [4] Magri, C., Consolmagno G., Ostrch S., et . al.: Radar constraints on asteroid regolith properties using 433 Eros as ground truth, Meteoritics & Planetary Science, Vol. 36, No. 12, pp. 1697-1709, 2001.
- [5] Wye L.C., Zebker H.A and Linscott, I. R.: Radar Scattering from Titan and Saturn's Icy Satellites Using the Cassini Spacecraft, Department of Electrical Engineering, Stanford University, 2011.