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Abstract
Multiple recent observations from astronomical sur-
veys and geochemical studies are in tension with our
current theoretical understanding of the accretion pro-
cess. Radiometric dating suggests that rocky proto-
planet accretion was long underway after 1–2 Myr
after CAIs [1], which is supported by evidence for
rapid dust coagulation during the earliest, embedded
disk phases of young protostars [2]. In contrast, plan-
etesimal formation from, e.g., the streaming instabil-
ity, requires elevated solid densities, which typically
necessitates major redistribution of dust mass during
the class II disk stage [3]. Furthermore, overcoming
the earliest accretion stages before a potential onset of
effective pebble accretion may be too slow to satisfy
geochemical constraints on early core segregation in
the non-carbonaceous meteorite reservoir [4, 5].

Here, we suggest that an early planetesimal burst
during the disk infall stage [6] can overcome some of
these challenges. We combine models of dust coagu-
lation and planetesimal formation [6] with their sub-
sequent thermochemical evolution to show that such
early-formed, water-rich planetesimals rapidly dehy-
drate due to 26Al heating [7] and undergo efficient
metal-silicate separation due to the build-up of in-
ternal magma oceans [8] during the first ≈ 1 Myr
after CAI formation, consistent with geochemically-
inferred segregation ages [4, 5]. Furthermore, a sec-
ond planetesimal burst from dust pile-up at a later
inwards-moving snowline during the class II stage
displays characteristics representative of the carbona-
ceous chondrite meteorite reservoir, including the
build-up of cores between ≈ 2–3 Myr after CAIs,
again consistent with geochemical constraints [4, 5].

Such a two-step process may rapidly seed and fa-
cilitate the accretion of the terrestrial planets prior to
the gas and ice giants, and may alleviate the tension
between the inferred water inheritance during Earth’s
main accretion phase [9] and the rapid water incorpo-

ration of embryos nucleated beyond the snowline [7].

Figure 1: (a) Change in planetesimal surface density
per time, reservoir definition. (b) Chemical evolution
of planetesimal reservoirs for a Gaussian-like size-
frequency distribution (SFD) centered on a radius of
100 km. NC and CC core segregation ages from [4, 5].
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