

Storms and the distribution of ammonia in Jupiter's atmosphere

Tristan Guillot (1), David J. Stevenson (2), Cheng Li (2), Sushil Atreya (3), Andy Ingersoll (2) and Scott Bolton (4)

(1) Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France,

(2) California Institute of Technology, Pasadena, USA,

(3) Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, USA,

(4) Southwest Research Institute, San Antonio, TX, USA

Abstract

Ground-based radio-wave observations and the Juno spacecraft have shown that, contrary to expectations, the concentration of ammonia is still variable down to pressures of tens of bars in Jupiter [1, 2, 3]. While mid-latitudes show a strong depletion of ammonia, the equatorial zone of Jupiter has an abundance of NH₃ that is nearly uniform. In parallel, Juno determined that the equatorial zone is peculiar for its absence of lightning, which is otherwise prevalent everywhere else in the planet [4]. We show that a model accounting for the presence of small-scale convection, ammonia dissolution in water ice, and storms driven by water condensation in Jupiter's atmosphere accounts for the observations. This new vision of the mechanisms at play which are both deep and latitude-dependent have consequences for our understanding of Jupiter's deep interior and of giant planets atmospheres in general.

References

- [1] Bolton, S. J. et al. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, *Science* 6340, 821-825, 2017
- [2] Li, C. et al. The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, *Geophys. Res. Lett.* 44, 5317-5325, 2017
- [3] de Pater, I. et al. Jupiter's ammonia distribution derived from VLA maps at 3-37 GHz. *Icarus* 322, 168-191, 2019
- [4] Brown, S. et al., Prevalent lightning sferics at 600 mega-hertz near Jupiter's poles, *Nature* 7708, 87-90, 2018