

The Sporadic Activity of (6478) Gault: A YORP-driven event?

Jan Kleyna (1), **Karen Meech** (1), Olivier Hainaut (2), Henry Hsieh (3), Alan Fitzsimmons (4), and Marco Micheli (5,6)

(1) Institute for Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA, (meech@ifa.hawaii.edu), (2) European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany, (3) Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA, (4) Astrophysics Research Centre, Queen's University Belfast, Belfast BT7 1NN, UK, (5) ESA NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy, (6) INAF—Osservatorio Astronomico di Roma, Via Frascati, 33, I-00040 Monte Porzio Catone (RM), Italy

Abstract

On 2019 January 5 a streamer associated with the 4–10 km main-belt asteroid (6478) Gault was detected by the ATLAS sky survey, a rare discovery of activity around a main-belt asteroid. Archival data from ATLAS and Pan-STARRS1 show the trail in early December 2018, but not between 2010 and January 2018. The feature has significantly changed over one month, perfectly matching predictions of pure dust dynamical evolution and changes in observing geometry for a short release of dust around 2018 October 28. Follow-up observations with HST show a second narrow trail corresponding to a brief release of dust on 2018 December 30. Both releases occurred with negligible velocity. We find the dust grains to be fairly large, with power-law size distributions in the 10^{-5} – 10^{-3} m range and power-law indices of ~ -1.5 . Three runs of ground-based data find a signature of ~ 2 hr rotation, close to the rotational limit, suggesting that the activity is the result of landslides or reconfigurations after YORP spin-up. We will present data from both the initial and later HST runs, along with ground based observations to examine the dust and its colors.

1. Introduction

“Active asteroids” are objects that have semi-major axes smaller than Jupiter’s, are orbitally decoupled from Jupiter (with Tisserand parameter $T_J > 3.0$), exhibit comet-like mass loss, and are dynamically distinct from classical comets. Active asteroids offer insight into a range of solar-system phenomena (primordial volatiles from MBC sublimation, material composition from rotation and impacts), and it is crucial to study each specimen in detail to determine its mechanism of activity.

The Hawai‘i ATLAS survey detected a tail on asteroid (6478) Gault in images obtained on 2019

January 5, when the object was at heliocentric distance $r = 2.48$ au (CBET 4594; [1]). The ATLAS archive shows that Gault was active on 2018 December 8, but not on earlier images during January 2018. The orbital elements ($e = 0.194$, $a = 2.305$ au, $i = 22.8^\circ$, having $T_J = 3.461$) are consistent with it being an MBC, albeit with a small semi-major axis.

We undertook an extensive campaign to observe Gault using the Hubble Space Telescope (3 orbits), the CFHT 3.6m telescope on Maunakea, the ESA Optical Ground Station at the Teide Observatory, the Himalayan Chandra Telescope, and the 4.2m William Herschel Telescope on La Palma.

2. Discussion

The initial analysis of the data [1] showed that Gault experienced two dust releases occurring around 2018 October 28 and December 30, creating the observed streamers. The width of the October 28 streamer is best explained with a maximum emission velocity $v_e \sim 0.7$ m/s in the sky plane. These events were short, with upper duration limits of < 15 days for the first, and < 5 days for the second. The size distribution of the dust grains in the streamers follows a power law with an index ~ -1.65 . The mass lost in the streamers is $m \approx 7 \times 10^9$ and 4×10^7 kg, respectively.

Dynamical simulations show that Gault is dynamically stable and unlikely to have been recently implanted from elsewhere, ruling out a cometary origin. The presence of a ~ 2 hour signature in three data sets identifies Gault as a superfast rotator that likely underwent a YORP-induced rotational disturbance.

In addition to this work, we will present some of our more recent observations.

Acknowledgements

We acknowledge the following supporting grants: KJM: NSF award AST1617015, and HST program GO/DD-15678 from NASA through STScI, operated by AURA under NASA contract NAS 5-26555; HHH: NASA Solar System Workings grant 80NSSC17K0723; AF: UK STFC grant ST/P0003094/1. This work uses data from the ATLAS project, funded through NASA grants NN12AR55G, 80NSSC18K0284, and 80NSSC18K1575, with the IfA at the University of Hawai'i, and with contributions from the Queen's University Belfast, STScI, and the South African Astronomical Observatory.

References

- [1] Kleyna, J. T., Hainaut, O.R., Meech, K.J. et al.: The Sporadic Activity of (6478) Gault: A YORP-driven event?, ApJL, 874, L20, 2019.