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Abstract

A model-independent method for detection of transit
borders, using the polynomial approximation of the
light-curve parts, is proposed. The trial processing of
long-cadence light-curves of 183 Kepler’s exoplanets
reveals for some objects a variability of transit’s
start/end- times and asymmetry. The diagnostic
diagram  was  constructed for  preliminary
classification and interpretation of such results.

1. Introduction

Hitherto studies on variability of exoplanetary transit
timing and depth supposed the symmetric shape of a
transit light-curve (TLC) suggesting a spherical
exoplanet (e.g., [1]). As a result, the independent
positions of transit borders and minimum were not
considered. However, exactly the border parts of a
TLC are most sensitive to the shape of a transiting
matter, e.g., to exo-rings and dust formations which
are of great interest. For the first time we explore
independent location of transit borders, detecting
their unstudied so far variations.

2. Method

We use publically available Kepler long cadence
light-curves [2] after Pre-search Data Conditioning.
After an iterative whitening and exclusion of outliers
we obtain the flux decrease AF during the transit,
which is used in further analysis. To increase the
number of measurement points in the analyzed TLC,
we fold it in each of adjacent equidistant time-
windows using the relative time At=t—tz. Here t and
te=to+PwE are the current flux count time and one,
recalculated in reference fame of the transit with
number E, respectively, using the transit period Py

and t, (the mid-time of first observed transit) from [2].

Since the time-window typically covers ~25 transits,
the irregular fluctuations of folded TLCs by sporadic
starspots are averaged. To determine independently

the relative start/end-, and minimum- times (At;, At.
and A4t,)) of a folded TLC, we separately approximate
its corresponding ingress/egress and middle parts
with the second-order polynomials. Although this
method could give systematic errors related with the
applied approximating polynomial order and TLC-
smoothing by the long-cadence exposition (0.02 day),
such constant displacements are inessential for the
study of transit variability. For the analysis of
obtained estimates of At;, At, and At,, the diagnostic
parameters: the Pearson correlation coefficient r
between At, and At and the transit asymmetry
A=(At,—AL)/(At.—At) are used.

3. Results

Our data set includes long-cadence TLCs of 183
Kepler’s objects with maximal signal-to-noise ratio.
In some cases we found transits with oscillating At
or At. (Fig. 1), whereas At,, remains quasi-constant,
as well as variable A; (Fig. 2). Such behaviour
resembles the modelled effects from a precessing
ring (Fig. 3).
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Figure 1: Example of the variable transit border At,
while the transit min-time At,, is practically constant.
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Figure 2: variable transit
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Figure 3: Modeling of transit variability for the
planet Kepler-15b with an imposed precessing ring

(30°inclination to the orbital plane, period 2400 days).
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Figure 4: Disfributions of 117 best estimates <Ag>
and ry, with the error of <Ag> under 0.05.

According to modeling (see Fig. 3), the inclined ring,
precessing with a period >10* days could result in a
perceptible TLC asymmetry [<A>—0.5/>0.01 and
low |re|<0.3 (Fig. 4). This prognosis is reflected in

Fig. 5, among other possible cases, as the rose ellipse.

The orange domain in Fig.5 (re<-0.3,<A>=0.5)
corresponds to variable impact parameter (IP) or size
of the transiting object. The green domain
(rse>0.3,<A>~0.5) depicts the transit shifts in time
due to longitudinal perturbations. The blue domain
(<A> below =~0.48) contains possible tail-like dust
formations, whereas the late minimum relative TLC
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Figure 5: Diagnostic diagram for the same
population (red squares) as in Fig. 4. The coloured
schematic of cluster domains is labelled with
interpretations.

center corresponds the yellow domain with <A
above 0.5.

4. Summary and Conclusions

Since the starspots have sporadic and local character,
they cannot produce correlation effects between the
start and end times, which are significant (|r,[>0.5) in
many cases (see Figs. 4 and 5). Regular oscillations
of At. and A; (Figs.1 and 2), as well as modeling in
Fig. 3, argue for the reality of found TLCs’ border
variability. Such variability is a promising, but so far
unused source of information on exo-rings,
circumplanetary dust and planetary dynamics.
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