

Retrieval of vertical CO₂ concentration in the Martian polar nights using MGS radio occultation data

Katsuyuki Noguchi

Faculty of Science, Nara Women's University, Nara, Japan (nogu@ics.nara-wu.ac.jp)

Abstract

This study aims at obtaining the information on the vertical profiles of carbon dioxide (CO₂) concentration in the Martian polar night region by radio occultation measurements, assuming that temperature in the region is close to CO₂ saturation temperature. We show the sensitivity of the proposed method to a boundary condition and the samples of the rederivations of both temperature and CO₂ concentration.

1. Introduction

Carbon dioxide (CO₂) is dominant in the Martian atmosphere. The supersaturation and/or condensation of CO₂ occur in the polar night regions on Mars since the air temperature frequently falls below the condensation temperature of CO₂ in those regions [1].

“Traditional” (or standard) radio occultation (RO) measurements derive temperature-pressure profiles of planetary atmospheres assuming composition concentration (volume mixing ratio, VMR). However, the raw data of RO also include the information of VMR in addition to the information of temperature. Assuming that air temperature in the Martian polar night region is close to CO₂ saturation temperature, we proposed the method to obtain the information on the VMR from radio occultation measurements.

2. Data

We used the Mars Global Surveyor (MGS) RO data [2], which is suitable for the studies of atmospheric thermal structures including CO₂ saturation. In the MGS RO measurements, more than 20,000 profiles of temperature and pressure on Mars during 1998–2007 (Mars Year, MY 24–28) are available. The MGS RO data includes altitude, temperature, pressure and air number density, and are provided at

the website of the Planetary Data System (PDS), NASA. We focused on the northern polar nights regions (60°N–70°N), where the MGS RO data includes a sufficient number of profiles of temperature and pressure.

3. Method

RO normally derives a temperature profile of a planet assuming the initial temperature T_{init} at the highest level of the profile, and its atmospheric compositions (VMR of constituents, i.e., CO₂, Ar, and N₂ in the Martian atmosphere). Instead, this study simultaneously rederives the profiles of both temperature and VMR 1) by fixing T_{init} to a given value (as with the normal retrieval), 2) assuming that all the values of temperature at other levels are as close to saturation temperature T_{sat} as possible, and 3) assuming that the values of CO₂ VMR are monotonically increasing with altitude. Under those assumptions, rederived temperature becomes T_{sat} at the lowest level of the profile. Figure 1 shows the schematics of the calculations mentioned above.

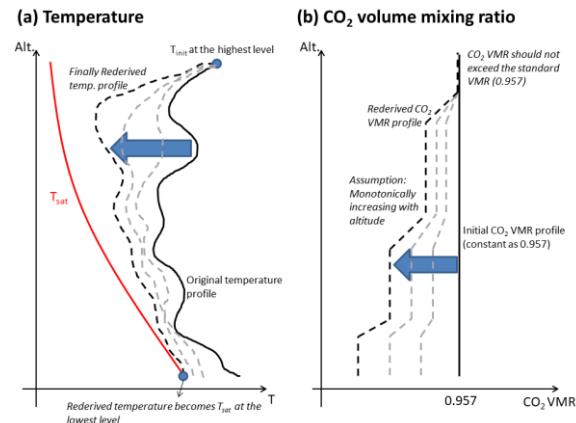


Figure 1: Schematics of iterative calculations to rederive (a) temperature and (b) CO₂ VMR.

4. Results

4.1 Sensitivity to T_{init}

In the rederivation, the arbitrary boundary condition, i.e., T_{init} , is the largest error factor. Therefore, we checked the sensitivity of the rederivation to T_{init} . Figure 2 shows the examples of the rederivation of temperature and CO₂ VMR when various values of T_{init} (110K-150K) were given. While temperature converged with altitudes decreasing regardless of T_{init} , CO₂ VMR largely depended on T_{init} . We also checked the sensitivity of the rederivation to the values of the initial CO₂ VMR, but it did not affect the convergence.



Figure 2: Samples of rederivals of (a) temperature and (b) CO₂ VMR for various T_{init} (110-150K).

4.2 Examples of Rederived Temperature and CO₂ VMR

The sensitivity study indicates that we need a reliable T_{init} for the rederivation. Here we focus on an original MGS-RO profile (#3051Q22A), which was obtained at the southern high-latitude (89°S) in midwinter ($L_s=141^\circ$). The temperature values at the same latitude and in the same season in the Mars Climate Database (MCD) [3] are saturated at all the levels of the profile. Therefore, we adopted T_{sat} as T_{init} for the rederivation. Temperature in the original profile (the black curve in Figure 3(a)), which assumed T_{init} is 150K, is constantly deviated from the saturation temperature curve (in light green) in the lower altitudes. When we replaced the T_{init} value by T_{sat} , the temperature rederived became close to T_{sat} at almost all the levels. The CO₂ VMR rederived ranged from 70-90% with several step-like structures.

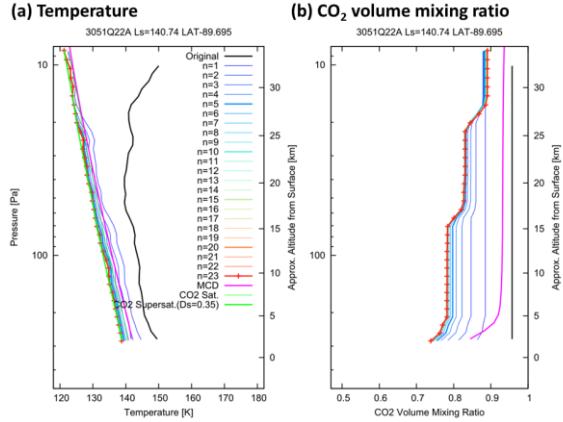


Figure 3: Samples of rederivals of (a) temperature and (b) CO₂ VMR for T_{init} equal to T_{sat} .

5. Concluding Remarks

Using RO measurements, we proposed a method to retrieve the vertical profiles of CO₂ VMR in the Martian polar nights assuming that CO₂ is saturated and temperature is close to T_{sat} . The method proposed is sensitive to a boundary condition of the temperature at the top level of the profile. For future work, the data from other measurements, e.g., MRO-MCS, will be examined to determine T_{init} .

Acknowledgements

The author is grateful to David P. Hinson and the MGS radio occultation team for providing pressure-temperature data from the RO measurements. The MGS RO data are available at the website of Atmospheres Node of NASA PDS (<http://atmos.pds.nasa.gov/MGS/tp.html>). The MCD data are available at the LMD website (<http://www-mars.lmd.jussieu.fr>). The author is grateful to Aymeric Spiga, François Forget and Ehouarn Millour for their useful comments. The author was supported by JSPS KAKENHI Grant Number 15K05289 and 19K03951.

References

- [1] Kieffer et al. (1977) *JGR*, 82(28), 4249–4291.
- [2] Hinson et al. (1999) *JGR*, 104(E11), 26,997–27,012.
- [3] Millour et al. (2012) *EPSC, Madrid*, 2012.