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Abstract

The gradient analysis of pre- and post-transit parts of
Kepler’s light-curves reveals hitherto unknown
photometric phenomena apparently from
exoplanetary associated dust. In addition to dust tails
of decaying planets, there are various manifestations
of circumplanetary halos as well as pre-transit
obscuring matter. Such phenomena appear a valuable
source of information about dusty exoplanetary
plasmas and winds.

1. Introduction

Hitherto the out-transit parts of light-curves (LCs)
were studied only for the search of cumulative effect
of exomoons [1]. For the first time we analyze
individual cases of transit-vicinities. These regions
are of interest regarding possible manifestations of
near-by exoplanetary dust structures. They could be
generated by e.g., moonlet erosion, volcanoes of lo-
type satellites as well as eroding dusty atmospheres.

2. The gradient method

We use publically available Kepler long-cadence
LCs [2] after Pre-search Data Conditioning
(PDCSAP flux or Fppc hereinafter) [3]. To remove
the residual instrumental drifts as well as the stellar
variability at timescales longer than the transit
duration, we approximate the normalized light-curve
Fppc(t)/<Fppc(t)>, which covers a time interval
+104¢4, centered at the transit, with a 6™-order
polynomial Fy(#). Here # is the flux measurement
time, and Af, is the transit duration. After the
iterative exclusion of outliers, we use Fy(%) as a
reference level to find the flux decrease during the
transit: AFk: [FPDC(tk)/<FPDC(tk)>]7Fb(tk): used in
further analysis. To detect the dust extinction, the
linear gradients G,,=0(4F)/0(3f) were found for
folded LC in the time intervals -7, <0/<-Tn;, and
Tmin<Ol<Tma before ingress and after egress,

respectively. Here &8¢ is the time counted from the
nearest transit border, calculated with cumulative
transit parameters (reference time, period, duration)
from [2]. The interval borders Ty, and Ty.x were
varied between 0.01 days (half-period of the flux
counting/smoothing) and 0.16 days corresponding to
the planetocentric distances from ~2 to ~17 typical
radii R,, of hot-jupiters.

3. Results

Our data set includes long-cadence LCs of transits of
183 Kepler’s objects with maximal signal-to-noise
ratio, mainly from the list in [4]. Figure 1 presents
the results obtained in the distant regions with
Tmin=0.03 days and 1,,,x=0.16 days.
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Figure 1: Diagram of gradients G, (post-egress) vs.
G (pre-ingress) in the distant regions (7,,;,=0.03 and
Tmax=0.16 days) for 117 exoplanets with errors below
0.05 percent/day.

One can see in Figure 1 the excess abundance of
estimates in the (G;>0, G,<0) quadrant, supposing
the forward-scattering by micron dust. Atmospheric
aerosols could give the increase of the flux only by
3(AF)<32.5 ppm for ~1pm particles (Table 2 in [5])



on the phase-angle scale 20° (Eq.2 in [6])
corresponding to the time-scale 1~(20°/360°)P,, for
the transit period P,. Taking the typical P,~10 days,
one can estimate 7~0.6 days and
|G 2|~8(AF\)/1s<0.005 percent/day. This atmospheric
contribution is negligible in comparison with
observable  gradients  |G;,[>0.5  percent/day,
supporting the dust interpretation. The cases from
(Gi<0, G»>0) quadrant correspond the flux
obscuration by large (>>1pum) particles.

Closer to planets (for 1,,;,=0.01 and 7,,,,=0.05 days)
the analogous G, vs. G, diagram in Figure 2
demonstrates different distributions.
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Figure 2: Diagram of gradients G, (post-egress) vs.
G, (pre-ingress) in the closer to planet regions
(Tmin=0.01 and 7,,,,=0.05 days) for 130 exoplanets
with errors under 0.3 percent/day. The supposed
domains with labelled interpretations are marked by
colours.

One can see in Figure 2 a shift of the main cluster of
estimates toward negative G,. This shift means pre-
transit manifestations of the dust obscuring matter
(DOM; rose-colour domain). Example of such events
are shown in Figure 3.

4. Summary and Conclusions

Since the found out-of-transit photometric
peculiarities show clear patterns (Fig. 1-3) in the
transit-related time-scale (J7), they are related to
planet, being apparently of dust origin. This is a new
aspect of hot-jupiters’ transits and physics.
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Figure 3: Examples of the pre-transit, with DOM
(arrowed), and post-transit parts of LC. The bars
correspond to the planet’s radius ingress-time.
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