

Rationale and concepts for robotic and human outposts on Phobos

G. Thébault (1), E. Sefton-Nash (1), O. Witasse (1), D. Koschny (1), F. Cipriani (1), B. Segret (2), B. Sanchez-Cano (3)

- (1) European Space Agency, Noordwijk, The Netherlands (contact: owitasse@cosmos.esa.int)
- (2) Observatoire de Paris-Meudon, France
- (3) Radio and Space Plasma Physics Group, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK

Abstract

The surfaces of the Martian moons, Phobos and Deimos, may offer a stable environment for longterm operation of platforms. We present a broad assessment of the potential scientific; strategic and operational opportunities for such platforms.

Objectives include:

1) Monitoring and scientific investigations of Mars' surface and atmosphere;

2) Scientific investigations of the Martian moons;

3) Monitoring and scientific investigations of the space environment;

4) Use as data relay for Mars surface assets or interplanetary missions;

5) Use in a Mars positioning system;

6)Investigations for in-situ resource exploitation and precursor human or robotic based station.

The SPICE software environment (developed by NASA's Navigation and Ancillary Information Facility [NAIF]) allows calculations using orbital elements and incorporates a recently published digital shape model of Phobos, developed from observations by Mars Express' High Resolution Stereo Camera (HRSC). We present results from SPICE calculations performed as a function of location on Phobos, to help answer questions stemming from the above objectives for a study period throughout 2030. By combining and weighting results from these calculations, we present a basic trade study to optimise the location of a platform over Phobos' surface. Future studies that build on these results should incorporate constraints of a platform design, e.g. considering also including thermal environment, power requirements, and link budget constraints.

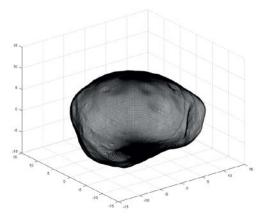


Figure: Digital shape model of Phobos