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Abstract 

The NOMAD (Nadir and Occultation for MArs 

Discovery) – operating on board the ExoMars 2016 

Trace Gas Orbiter mission – started to acquire the 

first scientific measurements on 21 April 2018. 

Here, we will present one year of observation of 

ozone and aerosols vertical distribution obtained 

from NOMAD-UVIS solar occultations. 

1. Introduction 

Ozone is a species with a short chemical lifetime and 

characterized by sharp gradients at the day-night 

terminator both on Earth and on Mars [1]. Odd 

hydrogen radicals play an important role in the 

destruction of ozone. This results in a strong anti-

correlation between O3 and H2O [1].  

Atmospheric aerosols are ubiquitous in the Martian 

atmosphere and they strongly affect the Martian 

climate [2]. This is particularly true during dust 

storms. In June 2018, after a pause of 11 years, a 

planet-encircling dust storm took place on Mars that 

lasted two months.  

NOMAD will help us improve our knowledge of the 

climatology of ozone and aerosols. In particular, we 

will have the rare opportunity to analyze the 

distribution of aerosols during a dust storm. 

2. The NOMAD UVIS channel 

NOMAD is a spectrometer composed of 3 channels: 

1) a solar occultation channel (SO) operating in the 

infrared (2.3-4.3 μm); 2) a second infrared channel 

LNO (2.3-3.8 μm) capable of doing nadir, as well as 

solar occultation and limb; and 3) an 

ultraviolet/visible channel UVIS (200-650 nm) that 

can work in the three observation modes [3,4].  

The UVIS channel has a spectral resolution <1.5 nm. 

In the solar occultation mode it is mainly devoted to 

study the climatology of ozone and aerosols content 

[5]. 

1.1 UVIS solar occultations 

Since the beginning of operations, on 21 April 2018, 

NOMAD UVIS acquired more than 1000 solar 

occultations with an almost complete coverage of the 

planet. 

Figure 1 displays transmission spectra obtained at 

different altitudes acquired on June 8, 2018. The 

ozone absorption band (Hartley band) is clearly 

visible around 250 nm. The aerosols affect the entire 

spectral range by changing the background level of 

the spectrum. 

 

Figure 1: UVIS transmission spectra at different altitudes. 

(Blue) lower altitudes; (Red) higher altitudes. Black lines 

are the ASIMUT simulations. 
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3. Retrieval technique 

NOMAD-UVIS spectra are simulated using the line-

by-line radiative transfer code ASIMUT-ALVL 

developed at IASB-BIRA [6]. In a preliminary study 

based on SPICAM-UV solar occultations (see [7]), 

ASIMUT was modified to take into account the 

atmospheric composition and structure at the day-

night terminator. We followed the same method 

described in [8] to check that the spectra are correctly 

calibrated and accurately normalized to the solar 

spectrum. As input for ASIMUT, we used gradients 

predicted by the 3D GEM-Mars v4 Global 

Circulation Model (GCM) [9,10]. UVIS ozone 

profiles will also be compared to SPICAM-UV 

retrievals. 

4. Summary and future work 

We will present ozone and aerosols vertical profiles 

retrieved from the first year observations of 

TGO/NOMAD acquired before, during, and after the 

global dust storm 2018. In addition, we plan to 

compare our retrievals to SPICAM-UV observations.  
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