

Forbidden oxygen emission lines in optical high-resolution spectrum of 21P/Giacobini-Zinner in 2018 apparition

Hideyo Kawakita¹, Yoshiharu Shinnaka¹ and Akito Tajitsu²

¹Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan,

²Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720, USA
(kawakthd@cc.kyoto-su.ac.jp)

Abstract

Forbidden emission lines emitted from excited oxygen atoms at 557.7 nm (from O(¹S) to O(¹D)) and at 630.0/636.4 nm (from O(¹D) to O(³P)) have been used to estimate water gas production rates of comets, and also recently used for CO₂/H₂O abundance ratio in comets. Here we report optical high-resolution spectroscopic observations of comet 21P/Giacobini-Zinner taken by HDS mounted on the Subaru Telescope atop of Maunakea, Hawaii. Thanks to very weak C₂ Swan band emission in this comet, we could observe the forbidden oxygen emission line at 557.7 nm without strong contamination by C₂ lines. The forbidden red lines of oxygen atom at 630.0/636.4 nm could also be detected clearly. The green-to-red line ratio of the comet indicates relatively low abundance ratio of CO₂ with respect to H₂O.

1. Introduction

Forbidden oxygen emission lines [O I] at 557.7 nm and at 630.0/636.4 nm are usually observed in optical spectra of comets [3-11]. Those green (557.7 nm) and red lines (630.0/636.4) lines are emitted from excited state of oxygen atoms that are produced at photodissociation of water and oxygen-bearing molecules in cometary coma. The green line from O(¹S) to O(¹D) is usually weaker than red lines from O(¹S) to O(³P). The green-to-red line ratio (G/R ratio) is typically in the range of 0.09 ± 0.02 for heliocentric distances smaller than 2 au [5]. Based on model calculations [1,2], the G/R ratio is considered as a clue to CO₂/H₂O mixing ratio in comets. Since the initial attempt to derive CO₂/H₂O ratio from G/R ratio in comet 116P/Wild 4 at 2.4 au from the Sun [7] several comets have been observed at relatively far from the Sun (> 2 au) and they exhibited higher G/R ratios than typical value (0.09 ± 0.02); i.e., more abundant in CO₂ compared to H₂O [6,8,10].

2. Observations

We observed comet 21P/Giacobini-Zinner (hereafter, G-Z) to search for ¹⁵NH₂ in the comet on UT 2018 September 5, 9 and October 3 by the HDS spectrograph and the Subaru Telescope atop of Maunakea, Hawaii. The spectral resolution was 72,000 and the slit size was 9" x 0".5 on the sky. Total exposure time was 281,000 s on source. Here we focus on the spectrum taken on October 3 when the relative velocity of the comet relative to observer is -10.5 km s⁻¹ (large enough to separate telluric and cometary oxygen emission lines). In comet 21P/G-Z, C₂ and NH₂ are strongly depleted and their emission lines were very weak (both C₂ and NH₂ emission lines usually contaminate the forbidden oxygen emission lines). Especially, the green line is significantly contaminated with C₂ emission lines in many cases. Therefore, comet 21P/G-Z is one of best targets for investigating forbidden oxygen lines in comets.

3. Results and Discussion

The G/R ratio (defined as the flux ratio of the green line to the red lines) in comet 21P/G-Z is derived as 0.07, corresponding to the column densities ratio of CO₂/H₂O = 4.8% from the equation (12) of [5] (we don't assume quenching of forbidden oxygen emission lines [1,2]). The derived CO₂/H₂O abundance ratio indicates that comet 21P/G-Z is depleted in CO₂ compared to other comets.

We also measured the intrinsic line width of forbidden oxygen emission for both the green and the red lines. The intrinsic FWHM of [O I] at 557.7 nm is 3.53 ± 0.05 km s⁻¹ while the intrinsic FWHMs of [O I] at 630/646.3 nm are 1.64 ± 0.03 and 1.77 ± 0.03 km s⁻¹, respectively. As already demonstrated by previous studies [3,4,5], the intrinsic FWHM of the green line (~2 – 3 km s⁻¹) is wider than those of the red lines (~1 – 2 km s⁻¹). The G/R ratio in the case

that H_2O molecules mainly produce the excited oxygen atoms is 0.04 while the G/R ratios are 0.60 and 0.78 in the cases of CO_2 and CO , respectively [5]. Decock et al. claimed that CO_2 is the best candidate to explain wider line width for the green line because the excitation source of O^{1S} from CO_2 is more energetic (around 95.5 – 116.5 nm) than that of O^{1S} from H_2O (the Ly- α photons at 121.6 nm) [5]. However, this is not always correct. The excess energy at the photodissociation can accelerate the products as follows, in the case of $\text{AB} + \text{photon} \rightarrow \text{A} + \text{B}$:

$$\hbar c / \lambda - D - I = \frac{1}{2} m_{\text{A}} v_{\text{A}}^2 + \frac{1}{2} m_{\text{B}} v_{\text{B}}^2 \quad (1)$$

where λ is the wavelength of photon that photodissociates the parent molecule (like H_2O and CO_2), D is dissociation energy of the parent, I is the energy imparted to the internal degrees of freedom of the photodissociation fragments (A and/or B), v_{A} and v_{B} are the speeds of the fragments in the center of momentum reference frame, and m_{A} and m_{B} are the masses of the fragments, respectively. Even for more energetic photons, the final velocities depend on both D and I .

Alternatively, we considered the collisional quenching for O^{1D} atoms in coma. If the energy represented by the left-band side of equation (1) is similar for both O^{1D} and O^{1S} , O^{1D} can be accelerated to a similar speed as O^{1S} , immediately after the photodissociation of its parent molecule. Because the lifetime of O^{1D} is longer than O^{1S} by a factor of ~ 100 , the probability of collision between O^{1D} and H_2O (as background) is larger than that for O^{1S} . Therefore, O^{1D} atoms with larger relative velocities to the surrounding coma flow are selectively removed from the coma by collisions. Eventually, O^{1D} atoms with similar velocity vectors as the background coma (i.e., $\sim 1 \text{ km s}^{-1}$) remain. This mechanism can play important role to realize narrower line width for the red lines, especially in a productive comet (the come gas density is higher) and less effective for comets far from the Sun. We will present the results based on the collisional Monte-Carlo simulations for O^{1D} and O^{1S} in the case of comet 21P/G-Z and discuss about the validity of the above hypothesis.

Acknowledgements

This work is based on data observed at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan (NAOJ).

References

- [1] Bhardwaj, A. & Raghuram, S., A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE, *ApJ*, 748, 13, 2012.
- [2] Raghuram, S. & Bhardwaj, A., Photochemistry of atomic oxygen green and red-doublet emissions in comets at larger heliocentric distances, *A&A*, 566, A134, 2014.
- [3] Cochran, A. & Cochran, W., Observations of O^{1S} and O^{1D} in Spectra of C/1999 S4 (LINEAR), *Icarus*, 154, 381 – 390, 2001.
- [4] Cochran, A., Atomic oxygen in the comae of comets, *Icarus*, 198, 181 – 188, 2008.
- [5] Decock, A., et al., Forbidden oxygen lines in comets at various heliocentric distances, *A&A*, 555, A34, 2013.
- [6] Decock, A., et al., Forbidden oxygen lines at various nucleocentric distances in comets, *A&A*, 573, A1, 2015.
- [7] Furusho, R., et al., Forbidden oxygen emission lines of Comet 116P/Wild 4 at 2.4 AU, *Adv. in space res.*, 38, 1983 – 1986, 2006.
- [8] McKay, A., et al., Forbidden oxygen lines in Comets C/2006 W3 Christensen and C/2007 Q3 Siding Spring at large heliocentric distance: Implications for the sublimation of volatile ices, *Icarus*, 220, 277 – 285, 2012.
- [9] McKay, A., et al., Observations of the forbidden oxygen lines in DIXI target Comet 103P/Hartley, *Icaru*, 222, 684 – 690, 2013.
- [10] McKay, A., et al., Evolution of H_2O , CO , and CO_2 production in Comet C/2009 P1 Garradd during the 2011–2012 apparition, *Icarus*, 250, 504 – 515, 2015.
- [11] McKay, A., et al., The CO_2 abundance in Comets C/2012 K1 (PanSTARRS), C/2012 K5 (LINEAR), and 290P/Jäger as measured with Spitzer, *Icarus*, 266, 249 – 260, 2016.