

Identify the H₂ source of the Saturnian ring atmosphere using numerical modelling and the INMS measurements from the Cassini Grand Finale Mission

Wei-Ling Tseng (1), O. J. Tucker (2), R. E. Johnson (3), M. E. Perry (4), J. H. Waite, Jr. (5)
National Taiwan Normal University, Taiwan (2) NASA Goddard Space Flight Center, USA (3) University of Virginia, USA
(4) Johns Hopkins University Applied Physics Lab, USA (5) Southwest Research Institute, USA (wlteng@ntnu.edu.tw)

Abstract

During the Cassini Grand Finale mission, this spacecraft, for the first time, acquired in-situ measurements of Saturn's upper atmosphere and its rings and provided critical information for understanding the interaction between the main rings and the Saturnian system. The ring atmosphere is the source of neutrals, which are primarily generated by photolytic decomposition of water ice, and of plasma in the Saturnian magnetosphere. In addition, the main rings have strong interactions with Saturn's atmosphere and ionosphere possibly through the grain impacts, neutral diffusion and current exchange. The data from Cassini Grand Finale mission shed light on the dominant physics and chemistry in this region of Saturn's magnetosphere. For example, finding the presence of carbonaceous molecules around the main rings [1] and a large amount of nano-sized grains [2] [3]. With the updated Cassini measurements, we will revisit the details in the ring atmosphere/ionosphere model, and incorporate a DSMC model of Saturn's H₂ exosphere, to study the measured H₂ density distribution in this interaction region.

1. Introduction

At Saturn Orbital Insertion (SOI) of the Cassini spacecraft in 2004, the Cassini Plasma Spectrometer (CAPS) and the Ion and Neutral Mass Spectrometer (INMS) instruments had observed O₂⁺ and O⁺ ions when flying over Saturn's main rings (e.g., [4] [5] [6]). It confirmed the existence of the ring atmosphere and ionosphere which was suggested to be formed mainly by photolytic decomposition of water ice producing H₂ and O₂ in a ratio of 2:1 [7]. It was also found that the effect of slow ion-molecule

collisions occurred in the main ring region plays an important role in the morphology of the ring atmosphere and ionosphere [8]. In addition to computing the density distribution of the scattered O₂ in the Saturnian magnetosphere, [8] also predicted that Saturn's ring atmosphere and ionosphere would show a seasonal dependence due to the variation of orientation of Saturn's ring plane to the Sun. The seasonal variations of the ring plasma have been confirmed by the following measurements using with several independent instruments onboard Cassini (e.g., [9], [10]). In this work, we aim to explain the H₂ densities observed by the INMS in this intermediate region of the mixed neutral sources (i.e., Saturn's exosphere and inflow from the rings).

2. Numerical modelling

A test-particle model of the ring atmosphere/ionosphere [8] is revisited with the updated Cassini data. In addition, a 3-dimensional free molecular flow (FMF) Monte Carlo model is also constructed to simulate Saturn's exosphere constrained to the Cassini Ultraviolet Imaging Spectrograph (UVIS) observations [11]. Using with the above combined model of Saturn's exospheric H₂ and the ring H₂ atmosphere, we will examine the morphology of the combined H₂ density distribution and compare with the INMS measurements in order to provide additional constraints for the respective H₂ source rates.

3. Preliminary results

All the species detected by the INMS (H₂, CH₄, CO/N₂/C₂H₂, and CO₂) exhibited very similar profiles for the density vs distance from the ring plane: ~0.5 -1 x10⁴ cm⁻³ and with the vertical scale

heights of ~ 0.05 R_s [12]. A common scale height shared by all neutral species is contradictory to our modeling results. Since any neutrals released from particles in the tenuous ring would be thermally accommodated to the local ring temperature, the scale height of each species would be determined by a factor of $1/(square\ of\ its\ mass)$ (as shown in Figure 1). Therefore, we suggest that the INMS measurements during the F-ring flybys are highly likely due to impact-induced vaporization of small grains inside the INMS chamber. In addition, our comparisons of the modeled H_2 density and the INMS data during the proximal orbits suggest a robust H_2 ring atmosphere existed in the region of $> 4,000$ km above Saturn (as shown in Figure 2).

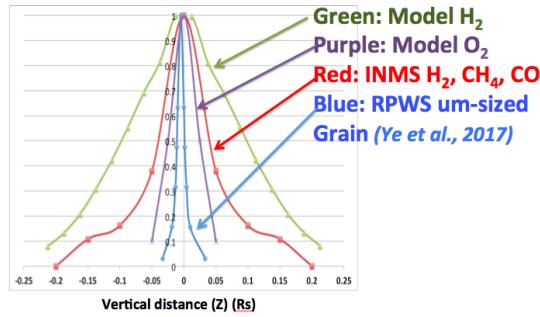


Figure 1: The modeled H_2/O_2 density distributions and the INMS data collected in the F-ring orbits. The distribution of the micron-sized dust (>0.1 micron) observed by RPWS is also shown [13]. The presence of abundant nanograins in the F-ring had been predicted by [14].

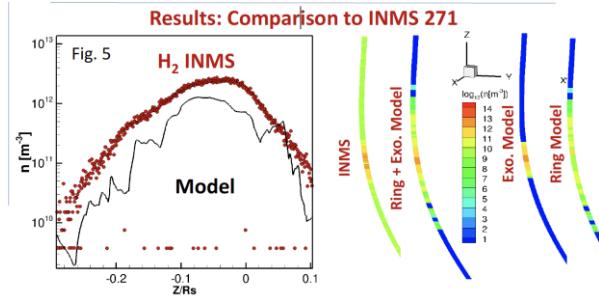


Figure 2: The comparison of the modeled Saturn's exospheric H_2 density distribution and the INMS data.

References

- [1] Waite et al., : Chemical interactions between Saturn's atmosphere and its rings, *Science*, Volume 362, Issue 6410, 2018.
- [2] Mitchell et al., : Dust grains fall from Saturn's D-ring into its equatorial upper atmosphere, *Science*, Volume 362, Issue 6410, 2018.
- [3] Hsu et al., : In situ collection of dust grains falling from Saturn's rings into its atmosphere, *Science*, Volume 362, Issue 6410, 2018.
- [4] Tokar et al., Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings. *Geophysical Research Letters*, 32, 2005
- [5] Waite et al., : Oxygen ions observed near Saturn's A ring. *Science* 307, 1260–1262, 2005
- [6] Elrod et al., : Seasonal variations in Saturn's plasma between the main rings and Enceladus'. *Journal of Geophysical Research* 117, A3, 2012
- [7] Johnson et al., : Production, ionization and redistribution of O_2^+ in Saturn's ring atmosphere. *Icarus* 180, 393–402, 2006
- [8] Tseng et al., : The Structure and time variability of the ring atmosphere and ionosphere. *Icarus* 206, 382–389, 2010
- [9] Christon et al., : Saturn suprathermal O_2^+ and mass-28⁺ molecular ions: Long-term seasonal and solar variation *JGR*, 118, 3446, 2013
- [10] Elrod et al., : Seasonal and radial trends in Saturn's thermal plasma between the main rings and Enceladus, *Icarus*, 242, 130, 2014
- [11] Koskinen et al., : The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations, *Icarus*, 226, 1318, 2013
- [12] Perry et al., : In-situ measurements of ions and neutrals near Saturn's F-ring, *European Planetary Science Congress* 2017
- [13] Ye et al., : Cassini RPWS Dust Observation Near the Janus/Epimetheus Orbit, *JGRA*, 123, 4468, 2018
- [14] Johnson et al., : NANOGRAIN DENSITY OUTSIDE SATURN'S A RING, *APJL*, 834:L6, 2017