
Concept of a PDS4 product writer library and a python 

demonstrator 

Diego Fraga Agudo  

ESAC, Camino Bajo del Castillo s/n, Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spain 

(dfraga@sciops.esa.int) 

      

1. Introduction 

We present the concept of a library to write PDS4[1] 

products, together with a working demonstrator in 

Python, which could evolve into a reusable PDS4 

writer Python package that would be provided to the 

community as open source.  

 

The proposed tool is a PDS4 product writer meaning 

that it generates both the data file (digital object) and 

the PDS4 label file, as opposed to a PDS4 label only 

writer. The inputs of the tool are the data that are in 

memory that have to be written in files, in contrast to 

tools that take as an input already existing data files 

and construct a label for them. To our knowledge 

there is not any open source tool like this. 

  

2. Motivation (why this is needed) 

The goal is to facilitate the generation of reliable 

PDS4 compliant products, hiding to the data 

producer much of the complexity of the physical 

representation of the data and the metadata (label) 

and ensuring the consistency between the two. This 

not only facilitates the generation of the products but 

also its validation since the data producer relies on an 

already validated piece of SW that encapsulates a 

common reusable functionality. 

 

One of the advantages of relying on such a library is 

the prevention of errors. During the experience the 

author has of validating Rosetta mission data as an 

ESA Archive Scientist, it was found that errors that 

could have been prevented by using a library like this 

were very common. Rosetta is a PDS3 mission but 

equivalent errors can happen in PDS4. These errors 

can be classified into three categories: 

 

 Inconsistencies between the label and the 

data: For example an incorrect value is 

written in the offset attribute of the label 

indicating that the data object begins in a 

byte number different from the actual byte 

number in the data file. These type of 

inconsistencies are extremely common and 

might sometimes remain unnoticed until 

someone attempts to use the label to decode 

the data.   

 Inconsistencies within the label: For 

example a number of table fields (columns 

in a table) is declared in the fields attribute 

but a different number of fields is defined 

with the Field Character objects. These type 

of errors are common. 

 Errors in the data: there is an error while 

dumping the data in the file and the data are 

not written as the producer expected. These 

errors exists but are more rare and are often 

corrected in early stages.  

 

The consequences of any of these errors can be to 

make the data unreadable by PDS4 aware readers. 

Also if data users attempt to write their own reading 

SW using incorrect information on the label they can 

encounter serious difficulties. 

 

Of course such a library can have bugs that introduce 

errors, but it needs to be debugged only once and 

reused by any data producer. 

 

It can be argued that the use of schemas and 

schematrons together with validation tools solve all 

issues but they have some limitations:  

 

Limitation of XML schemas and schematrons.  

While the advantages of using XML schemas and 

schematron are enormous they do not guarantee by 

themselves the correctness of a product. Validating a 

label against its schemas and schematron can only 

tell whether the label is consistent with its schemas 

and schematrons or not. It does not tell anything 

about the consistency of the label with its data file. 

 

Limitation of Validation tools.  

EPSC Abstracts
Vol. 13, EPSC-DPS2019-1416-1, 2019
EPSC-DPS Joint Meeting 2019
c© Author(s) 2019. CC Attribution 4.0 license.



It is not possible to build a validation tool that detects 

all errors. Some errors are not detectable by common 

SW because there is nothing to check against. For 

example, an image stored as an array could have 

been written using unsigned integers but the label 

could incorrectly indicate that the values are signed 

integers. A validation tool cannot detect this error, 

the only thing it can do is to trust what is declared in 

the label. However if the image is displayed using the 

information from the label the image will be 

completely corrupted. 

 

Another characteristic of validation tools is that they 

can detect issues whereas the proposed library aims 

to prevent them. 

 

A library like the proposed one can also increase the 

homogeneity between products and promote or even 

enforce PDS4 recommendations and best practices.  

 

The next section explains a specific implementation 

of the concept while other implementations, for 

example in other languages, are also possible. 

 

The Python demonstrator 

 

A demonstrator with limited functionality has been 

developed in Python 3.  

 

The library generates both the data file (digital object) 

and its PDS4 label file. It generates completely 

automatically and transparently to the data producer 

the File Area part of the label where the data format 

is defined and provides a mechanism to fill in easily 

the remaining information in the label, which are 

specific for each product or mission and cannot be 

automatized. 

 

Currently the Python implementation is a 

demonstrator covering only Observational Products 

consisting of any arbitrary number of fixed width 

ASCII tables (PDS4 Table Character objects). It can 

be extended in the future to cover all PDS4 data 

structures and most PDS4 capabilities. The current 

plan is to release the demonstrator as open source 

software before the congress date. 

 

 

 

 

References 
[1] JPL (2018). Planetary Data System Standards 

Reference. pds.nasa.gov/datastandards 
 


