

Direct integration of dust from Phobos and Deimos and the effect of higher degree Martian gravity on the shape of their putative dust rings

Xiaodong Liu and Jürgen Schmidt
Astronomy Research Unit, University of Oulu, Finland (xiaodong.liu@oulu.fi)

Abstract

Dust grains ejected from the surface of the Martian moons Phobos and Deimos by impacts of the hyper-velocity interplanetary particles are expected to form tenuous dust rings [1]. In this work, we perform direct numerical simulations of the equations of motion for a large number of dust particles originating from Phobos and Deimos, using the large computer cluster at the Finnish CSC – IT Center for Science.

Particles of sizes ranging from sub-micron to 100 microns are simulated: $0.5\text{ }\mu\text{m}$, $1\text{ }\mu\text{m}$, $2\text{ }\mu\text{m}$, $5\text{ }\mu\text{m}$, $10\text{ }\mu\text{m}$, $15\text{ }\mu\text{m}$, $20\text{ }\mu\text{m}$, $25\text{ }\mu\text{m}$, $30\text{ }\mu\text{m}$, $40\text{ }\mu\text{m}$, $60\text{ }\mu\text{m}$, and $100\text{ }\mu\text{m}$. The most relevant forces are considered in our simulations, including the Martian non-spherical gravity, gravitational perturbations from the Sun, Phobos, and Deimos, solar radiation pressure, as well as the P-R drag. In our model the Martian gravity field up to degree 5 and order 5 is considered. The values of the gravitational spherical harmonics are taken from the Mars gravity model MRO120D [2]. The size-dependent values of Q_{pr} are computed from the Mie theory [3, 4] for spherical grains, by using the optical constants for silicate grains from [5]. The well-tested numerical code [6, 7, 8] is used to integrate the evolution of dust particles.

The effect of the Martian oblateness term J_2 ($\approx 1.96 \times 10^{-3}$) was well studied for the Martian dust in previous papers [9, 10, 11]. In this work, the effect of the J_3 gravitational coefficient ($\approx 3.15 \times 10^{-5}$) is analyzed, which reflects the north-south asymmetry of the planetary mass distribution. The simulations show that the J_3 term is important for the evolution of inclination, and it disperses the distribution of the dust ring in the vertical direction relative to the Martian equatorial plane. Furthermore, the variations in inclination due to J_3 affect the location and velocity of the dust particle, and as a result change the effect of solar radiation pressure and J_2 on the orbital semi-major axis and eccentricity. Finally, the configuration of the Mar-

tian rings for various grain sizes is presented, and the simulation results is compared with the upper limits of the optical depth inferred from the Hubble observations [12].

Acknowledgements

This work was supported by the *European Space Agency* under the project *Jovian Micrometeoroid Environment Model (JMEM)* (contract number: 4000107249/12/NL/AF) at the University of Oulu and by the Academy of Finland. We acknowledge *CSC – IT Center for Science* for the allocation of computational resources on their Taito cluster.

References

- [1] Soter, S. (1971). The dust belts of Mars. Report of Center for Radiophysics and Space Research 462.
- [2] Konopliv, A. S., Park, R. S., and Folkner, W. M. (2016). An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. *Icarus*, 274:253–260.
- [3] Mishchenko, M. I., Dlugach, J. M., Yanovitskij, E. G., and Zakharova, N. T. (1999). Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 63(2):409–432.
- [4] Mishchenko, M. I., Travis, L. D., and Lacis, A. A. (2002). *Scattering, absorption, and emission of light by small particles*. Cambridge University press.
- [5] Mukai, T. (1989). Cometary dust and interplanetary particles. In Bonetti, A., Greenberg, J. M., and Aiello, S., editors, *Evolution of Interstellar Dust and Related Topics*, pages 397–445. North-Holland.

- [6] Liu, X., Sachse, M., Spahn, F., and Schmidt, J. (2016). Dynamics and distribution of Jovian dust ejected from the Galilean satellites. *Journal of Geophysical Research: Planets*, 121(7):1141–1173.
- [7] Liu, X. and Schmidt, J. (2018). Dust arcs in the region of Jupiter’s Trojan asteroids. *Astronomy & Astrophysics*, 609:A57.
- [8] Liu, X. and Schmidt, J. (2018). Comparison of orbital properties of Jupiter Trojan asteroids and Trojan dust. *Astronomy & Astrophysics*, 614:A97.
- [9] Hamilton, D. P. (1996). The asymmetric time-variable rings of Mars. *Icarus*, 119(1):153–172.
- [10] Krivov, A., Sokolov, L., and Dikarev, V. (1995). Dynamics of Mars-orbiting dust: Effects of light pressure and planetary oblateness. *Celestial Mechanics and Dynamical Astronomy*, 63(3-4):313–339.
- [11] Krivov, A. V. and Hamilton, D. P. (1997). Martian dust belts: waiting for discovery. *Icarus*, 128(2):335–353.
- [12] Showalter, M. R., Hamilton, D. P., and Nicholson, P. D. (2006). A deep search for Martian dust rings and inner moons using the Hubble Space Telescope. *Planetary and Space Science*, 54(9-10):844–854.