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Abstract

Titan is the only satellite in the solar system with a
significant atmosphere consisting mainly of N,. Its
origin, however, is yet a matter of debate. Within this
presentation we will present simulations of thermal
atmospheric nitrogen escape at Titan through time
and discuss its implications for the origin and

evolution of the atmosphere of Saturn’s biggest moon.

1. Atmosphere  structure  and

thermal escape

For the simulation of nitrogen loss at Titan we
applied a time-dependent 1-D hydrodynamic upper
atmosphere model that solves the system of the fluid
equations for mass, momentum, and energy
conservation (see [1]). An important input into this
model is the evolution of the solar EUV-flux over
time, which is strongly depending on the rotational
evolution of the Sun [2]. Figure 1 shows the
temperature profile of Titan’s nitrogen atmosphere
for different insulating EUV fluxes as retrieved by
our model. The simulated total thermal escape of
nitrogen from Titan strongly varies in dependence of
the initial rotation rate of the Sun, i.e. from ~0.3
(slow rotator) to ~1.1 (moderate) and up to ~11 times
the present-day atmospheric mass for a fast rotator.
As an example, Figure 2 shows the loss rates in case
the Sun originated as a slow rotator.

1.1 The origin and evolution of the
atmosphere

An insight into the origin and evolution of Titan’s
nitrogen atmosphere can be gained by the isotopic
fractionation of “N/**N, which can be significantly
modified by atmospheric loss, since escape
preferentially removes the lighter isotope from the
atmosphere. Cassini measured the atmospheric value
at Titan to presently be at about 168 [3] which is in
the range of cometary ammonia [4,5]. This might

suggest NH3; to be a potential source of Titan’s
nitrogen. If escape, however, modified this value
over time, its origin might be a different one, e.g. N,
from the solar nebula or chondrites (as for the Earth).
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Figure 1: Temperature profiles for different EUV
fluxes.
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Figure 2: Atmospheric nitrogen loss rates over time
(slow rotating Sun).

Our simulations show that atmospheric escape cannot
alter “N/*N significantly. Taking into account
fractionation by thermal escape, sputtering and
photochemistry, the original fractionation in Titan’s
atmosphere could not have been higher than ~161 for
a slow, ~168 for a moderate and ~208 for a fast
rotating Sun, indicating that the origin of Titan’s
atmosphere might have been indeed protosolar



ammonia which is in agreement with a recent study
by Mandt et al. [6]. Moreover, if Titan’s atmosphere
originated endogenically through decomposition of
NH; and subsequent outgassing as N, as suggested
by Glein (2015) [7], then our study further suggests
that either for a moderate to fast rotating young Sun
Titan’s atmosphere originated not before ~4.3 billion
years ago or the young Sun was a slow to moderate
rotating young G-type star, which is also suggested
by another recent study [8].
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