

Building the Reference Small Body Population Model

Tim Spahr (1), James Bauer (2), Yan Fernandez (3), Tommy Grav (4), Emily Kramer (5), Eva Lilly (4), Amy Mainzer (5), Joseph Masiero (5), Charles Schambeau (3), Sarah Sonnett (4) and Ned Wright (6).
(1) NEO Sciences, LLC, tspahr44@gmail.com, (2) University of Maryland, College Park, MD 20742, (3) University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, (4) Planetary Science Institute, 1700 East Fort Lowell, Tucson, AZ 85719, (5) Jet Propulsion Laboratory, 4800 Oak Grove Dr. Pasadena, CA 91109, (6) University of California, Los Angeles, 475 Portola Plaza, Los Angeles, CA 90095.

Abstract

To model the performance of any current or future Near-Earth Object (NEO) survey, an accurate population model of all Solar System objects is required. A fixed population model of this sort is essential in order for consistent comparisons of NEO survey performance to be made as engineering trades and component tests are conducted. This population model, called the Reference Small Body Population Model (RSBPM), is currently under development by the Near-Earth Object Camera (NEOCam) team. The RSBPM will contain up-to-date information on the orbital elements, size distribution and albedo distributions for each population.

The NEO population is based on the orbital element and H distributions provided by recent survey data that has been combined with diameter and albedo information from NEOWISE [1][2][3][4]. In addition to containing NEOs, which are of particular importance, the RSBPM will also have main belt asteroids, including the largest 15 asteroid families. Main belt asteroids are of particular importance to modeling NEO survey performance because they outnumber the NEOs by orders of magnitude and can thus serve as a source of false linkages between real NEO detections.

The RSBPM also incorporates other small-body populations out to outer Solar System objects as well as comets. The RSBPM provides information on the sky-plane density and magnitude distribution of all small Solar System objects in order to properly model and simulate any Solar System moving object survey and thus could be used by a number of current or future survey projects. Development of the RSBPM will be completed before the NEOCam launch, and the finished product will be peer-reviewed to ensure accuracy. As with the NEOs, the other populations incorporate orbital and H distributions from e.g. [5] with diameters and albedos from NEOWISE [6][7][8]. Because the RSBPM is a

diameter-based model, and contains albedos and H values for each entry, both optical and infrared surveys can be compared on a consistent basis for various diameter-completeness levels.

Table 1: Small body populations included in the RSBPM.

Sub-Population	Population
Atira Asteroids	NEOs
Aten Asteroids	NEOs
Apollo Asteroids	NEOs
Amor Asteroids	NEOs
Earth Co-orbitals	NEOs
Mars-crossing Asteroids	
Main Belt Asteroids	MBAs
MBA Families	MBAs
Hungaria Asteroids	MBAs
Hilda Asteroids	MBAs
Thule Asteroids	MBAs
Jovian Trojans	
Centaurs	
Saturnian Trojan Moons	
Jupiter Family Comets	Comets
Halley Family Comets	Comets
Long-period Comets	Comets
Interstellar Objects	Comets/Asteroids

Acknowledgements

NEOCam is a project sponsored by NASA's Planetary Defense Coordination Office, a division of NASA's Planetary Science Directorate.

References

- [1] Granvik et al. (2018) Icarus 312, 181
- [2] Stokes et al. (2017) “Report of the Near-Earth Object Science Definition Team”
https://cneos.jpl.nasa.gov/doc/SDT_report_2017.html
- [3] Bottke et al. (2002) Icarus 156, 399
- [4] Mainzer et al. (2011) ApJ 743, 156
- [5] Grav et al. (2011) PASP 123, 423
- [6] Grav et al. (2011) ApJ 742, 40
- [7] Masiero et al. (2014) ApJ 791, 121
- [8] Bauer et al. (2017) ApJ 154, 53