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Abstract from interior models that fit the shape data and mini-
mize the observed wind velocity and dynamical heights

We present fluid Love numbé,,,, values for the Nep-  [2].

tune-Triton system as a function of the uncertainty in In Ref. [6] it was found that interior models for the

Neptune’s.J, value and rotation rate. We discuss the different rotation rates yield different normalized mo-

unexpected found splitting ik, for assumed slowand ~ ment of inertia valued. o, = 0.2410(8) and It =

fast rotation, respectively, in regard to differences in 0.2555(2) although the models would fit the sanig

the contribution functions of, andks. value. In Ref. [7] a similar splitting was obtained for
ko. This is surprising sincks is extraordinarily insen-
1. Dissimilar | ce Giants? sitive to different internal density distributions onge

and J, are fit, as has been shown for Jupiter [8] and
The Ice Giants Uranus and Neptune have similar mass,Saturn [9].
radius, gravity field {2, J4), and similar magnetic fields.

Qn the gther hand, _they differ in Iumin_osity and rota- 1oL oo “4-5‘ m%‘&w/-\éf-léb \
tion period P,.¢. This poses the question of perhaps E g E
dissimilar interiors of the ice giants. Here we inves- F 3
tigate if an observed fluid numbéy value for the = - b
Nep_tune_-Trlton system could help to further constrain = | HAT-P-13b Jup |
the interior structure of Neptune. ~ 1k o @ E
(] E =
2 = 3
s . 5 o ]
2. Splittingin I and k» 2 o .
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Table 1: Some observational constraints. E ‘ fast‘. .SIOY" ‘ 3
Parameter Value Ref. 0 02 04 06 0,8 1
Neptune Love number k

P, 1 (fast) 16h6m40s [5]
Piot,2 (slow)  17h27m29s  [2]
Req,1 at 1 bar 24,766 km 5]
Req,2atlbar 24,787 km  [2]

Figure 1: Observed (diamonds) and calculdtedal-
ues of individual planets and brown dwarfs, plotted
over their mass.

Grot 0.02608

Triton In Figure 1 we plot observekh, values for Jupiter
My /Myep 0.0048 . [3], Saturn [4], the hot Jupiter HAT-P-13b, and the
Gtid —2.1310™ massive hot Jupiter WASP-18b [1] in comparison to

) model predictions. For Neptune, the splittingkinbe-
The rotation rates of Uranus and Neptune are not tween slow and fast rotating models is large; it is of

even well known, with estimates differing ki) min same size as for changing the core mass of /10,
for Uranus andl h 21 min for Neptune, see Table 1. planet from 0 to~ 300Mg.
For Neptune, the faster rotation rate known as\ihe In contrast, models for Jupiter and Saturn that are

ager rotation rate was inferred from radio and mag- constrained by, and.J, yield tight (0.02%); ranges
netic field data while the slower value is a prediction [8, 9], currently in agreement with the Juno and Cassini



data based measurements. [6] Nettelmann, N., Helled, R., Fortney, J.J., and Redmer,
R.: New indication for a dichotomy in the interior struc-

3. Outlook ture of Uranus and Neptune from the application of modi-
’ fied shape and rotation data, Planet. Sp. Sci. 77, 143-151,
In order to understand the behaviorkgfas a function 2013.

of rotation rat_e we calculate the contribution functions [7] Nettelmann, N.: Static Love numbeks, for Neptune,
OT k2 and.Ja n this work. We also e_xplore Whethe_r EGU General Assembly, 7-12 April 2019, Vienna, Aus-
different scalings could be responsible for the split- tria, 2019.
ting. Gaining a better understanding of the behavior of
ko and the moment of inertia is important because at [8] Wahl, S.M., Hubbard, W.B., and Militzer, B.: Tidal re-
present, our results suggest that both parameters could Sponse of preliminary Jupiter model, ApJ, vol 831, pp.
be useful for inferring the solid rotation rate indepen- 14-22 2016.
dently on radio or magnetic field data. [9] Wahl, S.M., Hubbard, W.B., and Militzer, B.: The CMS
However, further effects may influence the plane- method with tides and a rotational enhancement of Sat-
tary tidal response, such as internal oscillations or at-  urn’s tidal response, Icarus, vol 282, pp. 183-194, 2017.
mospheric dynamics. The tiny overlap/in between
interior model predictions and the observed value for
WASP-18b may indicate that our static approach is too
simplistic.
Observingk, at Neptune might require a polar or-
biter that covers different longitudes.
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