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Background

Carbon dioxide, the major compound of the Martian
atmosphere, is well mixed up to the turbopause, by
definition,  and  is  governed  by  molecular  diffusion
above.  The altitude of  this  layer,  however,  and the
actual distribution of CO2 at thermospheric altitudes
are  not  well  described  observationally  given  the
difficulty  of  its  remote  determination  at  these
altitudes, and the scarcity of in-situ measurements so
far, in spite of a wave of recent data from MAVEN
[1,2]. Since the Trace Gas Orbiter (TGO) started its
nominal  science  phase  in  April  2018,  solar
occultation  measurements  from  two  of  its
instruments on board, NOMAD and ACS, permit a
systematic mapping of the CO2 abundance from the
upper  thermosphere  down to  tropospheric  altitudes
[3,4].  These  observations  present  a  unique
opportunity  to  explore  the  atmospheric  vertical
structure  (composition  and  temperature)  at  high
vertical  resolution [5].  This work is devoted to the
inversion of these datasets with a common inversion
scheme  that  we  recently  started  to  apply  to  both
instruments. 

The NOMAD SO Channel

The NOMAD instrument has three channels, two in
the IR and one in  the UV, capable  of  operating in
different observation modes: solar occultation, nadir
and  limb  [4,6].  The  SO  channel  in  the  IR  was
specifically  designed  to  perform  atmospheric
observations  via  solar  occultation  geometry.  This
channel ranges from 2.2 - 4.2 μm, uses an acousto-

optical tunable filter (AOTF) along with an echelle
grating  in  order  to  select  and  define  different
diffraction orders. The spectral width of every order's
windows varies from 20 to 35 cm-1, with a resolution
of close to 0.15 cm-1 (resolving power ~25000). We
focused here  on the orders  located around 2.7  μm,
covering  part  of  the  strongest  CO2 ro-vibrational
band in this spectral range. 

The ACS MIR Channel

The ACS instrument also has three channels and its
performance and characteristics have been previously
described in [3]. Our work primarily uses MIR, the
ACS cross dispersion echelle spectrometer  devoted
to solar occultation in the 2.3 - 4.2  μm range, very
similar  to  the  NOMAD  SO  channel,  and  with  a
combined  sensitivity  and  spectral  resolution  also
similar  to the NOMAD SO [5].   We focus here in
position 5, which includes diffraction orders around
2.6  μm, i.e.  sampling the same spectral  window as
the selected NOMAD SO data. 

Retrieval Scheme 

In  this  talk,  we  present  the  first  retrievals  of  CO2

from  a  small  selection  of  solar  occultation
measurements  from  NOMAD  and  ACS,  after
applying a common inversion scheme. This scheme
is  an  adaptation  of  an  inversion  code  initially
developed  for  use  in  Earth's  atmosphere  remote
satellite. It uses a line-by-line radiative transfer code
called KOPRA, primarily used for emission spectra,
coupled to an inversion processor [7,8]. It has been
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validated  against  other  radiative  transfer  code  and
used in numerous chemistry studies of stratospheric
and  mesospheric  emissions  [9].  The  adaptation  to
Mars included the implementation of new routines in
KOPRA to simulate instrumental functions for both
NOMAD/SO and ACS/MIR.  The datasets  selected
are Level 0 (raw detector) data around 2.6  μm with
tangent pointings at mesospheric and thermospheric
altitudes.  They were  cleaned  from  well  known
instrumental  artefacts,  binned  in  a  similar  altitude
grid to form 1-D vertical profiles, and converted to
limb  atmospheric  transmittances  before  application
of  the inversion.  Some examples  of  retrieved  CO2
profiles will be presented and discussed.
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