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Background

Carbon dioxide, the major compound of the Martian
atmosphere, is well mixed up to the turbopause, by
definition, and is governed by molecular diffusion
above. The altitude of this layer, however, and the
actual distribution of CO, at thermospheric altitudes
are not well described observationally given the
difficulty of its remote determination at these
altitudes, and the scarcity of in-situ measurements so
far, in spite of a wave of recent data from MAVEN
[1,2]. Since the Trace Gas Orbiter (TGO) started its
nominal science phase in April 2018, solar
occultation measurements from two of its
instruments on board, NOMAD and ACS, permit a
systematic mapping of the CO, abundance from the
upper thermosphere down to tropospheric altitudes
[3,4]. These observations present a unique
opportunity to explore the atmospheric vertical
structure (composition and temperature) at high
vertical resolution [5]. This work is devoted to the
inversion of these datasets with a common inversion
scheme that we recently started to apply to both
instruments.

The NOMAD SO Channel

The NOMAD instrument has three channels, two in
the IR and one in the UV, capable of operating in
different observation modes: solar occultation, nadir
and limb [4,6]. The SO channel in the IR was
specifically designed to perform atmospheric
observations via solar occultation geometry. This
channel ranges from 2.2 - 4.2 pm, uses an acousto-

optical tunable filter (AOTF) along with an echelle
grating in order to select and define different
diffraction orders. The spectral width of every order's
windows varies from 20 to 35 cm, with a resolution
of close to 0.15 cm™ (resolving power ~25000). We
focused here on the orders located around 2.7 um,
covering part of the strongest CO, ro-vibrational
band in this spectral range.

The ACS MIR Channel

The ACS instrument also has three channels and its
performance and characteristics have been previously
described in [3]. Our work primarily uses MIR, the
ACS cross dispersion echelle spectrometer devoted
to solar occultation in the 2.3 - 4.2 um range, very
similar to the NOMAD SO channel, and with a
combined sensitivity and spectral resolution also
similar to the NOMAD SO [5]. We focus here in
position 5, which includes diffraction orders around
2.6 wm, i.e. sampling the same spectral window as
the selected NOMAD SO data.

Retrieval Scheme

In this talk, we present the first retrievals of CO,
from a small selection of solar occultation
measurements from NOMAD and ACS, after
applying a common inversion scheme. This scheme
is an adaptation of an inversion code initially
developed for use in Earth's atmosphere remote
satellite. It uses a line-by-line radiative transfer code
called KOPRA, primarily used for emission spectra,
coupled to an inversion processor [7,8]. It has been



validated against other radiative transfer code and
used in numerous chemistry studies of stratospheric
and mesospheric emissions [9]. The adaptation to
Mars included the implementation of new routines in
KOPRA to simulate instrumental functions for both
NOMAD/SO and ACS/MIR. The datasets selected
are Level 0 (raw detector) data around 2.6 um with
tangent pointings at mesospheric and thermospheric
altitudes. They were cleaned from well known
instrumental artefacts, binned in a similar altitude
grid to form 1-D vertical profiles, and converted to
limb atmospheric transmittances before application
of the inversion. Some examples of retrieved CO2
profiles will be presented and discussed.
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